CH204 Experiment 1

Dr. Brian Anderson
Fall 2009
Are the Densities of
Coke and Diet Coke Different?

$$
d=\frac{m}{V}
$$

\qquad
\qquad
\qquad

Today

- Error in experimental data
\qquad
- Random
- Systematic
- Gross
- Accuracy and precision \qquad
- Accuracy - how close your final answer is to the correct one
- Precision - how close your data points are to each other \qquad
\qquad

More Today

- Significant digits
- Count 'em!
- Add and subtract'em!
- Multiply and divide 'em!

Standard deviation

- A statistical measure of random error

Quick look at Experiment 1

\qquad
\qquad

Significant zeroes

\qquad

36,003

1.0075

Trailing zeroes after a decimal place are also significant:
0.00750

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Weigh a few more...
\qquad

5.7128	5.6947
5.7085	$\mathbf{5 . 6 9 0 7}$
$\mathbf{5 . 6 1 0 6}$	$\mathbf{5 . 6 3 3 9}$
$\mathbf{5 . 6 0 0 9}$	$\mathbf{5 . 7 2 0 5}$
$\mathbf{5 . 6 4 6 6}$	$\mathbf{5 . 7 1 9 5}$

Now what does a quarter weigh?

Average $=\mathbf{5 . 6 7 3 8 7}$ grams
\qquad

What is Standard Deviation? \qquad

It's a calculation based on a set of data \qquad points that tells us how widely the data points are scattered around the average. \qquad
$s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$

Calculating Standard Deviation

This is 2009. Don't calculate it by \qquad hand. Use a built-in calculator function or use Excel.

Let's head to Excel right now
\qquad
\qquad and see how E-Z this is.
\qquad

Pay attention here
$\mathbf{5 . 6 7 2 8 7} \pm \mathbf{0 . 0 4 6 3 7 7} \mathbf{g}$

Round the standard deviation to ONE significant digit: 0.05

Report the average only up to that \qquad same decimal place: 5.67
\qquad
\qquad

Variability (random error) \qquad
limits your answer
$\mathbf{5 . 6 7 2 8 7} \pm \mathbf{0 . 0 4 6 3 7 7} \mathbf{g}$
should be reported as
$5.67 \pm \mathbf{0 . 0 5} \mathbf{g}$
And that's what a quarter weighs!
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ways of Determining Random Error

For a single reading:
Precision of the equipment
Tolerance of the glassware

For many readings:
Statistics
That's what we're gonna do in lab today.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Two-Part Lab

Part One:

\qquad
Measure the mass of 5 mL of sample using the analytical balance and three different types \qquad of glassware (pipette, burette, and graduated cylinder). \qquad
\qquad
Enter your results into the spreadsheet on the
\qquad computer nearest the printer, and use all the class data in your report.
\qquad

Important!

\qquad

You will need all three graphs:

Part One:

\qquad
1 - Density chart and graph comparing different methods (includes average and standard deviation for each method).

Part Two:

\qquad
2 - Mass vs volume graph for Coke
3 - Mass vs volume graph for Diet Coke \qquad
\qquad

Handling bad data

If you know it's bad - because you know
\qquad something went wrong, or because the number is physically impossible - \qquad you can discard it.

If you don't like it because it's widely scattered, you can't just toss it, you \qquad have to apply the \mathbf{Q}-test (see the appendix of the lab manual).

Interpolation

In order to calculate the density of water at the same temperature as your Coke or Diet Coke sample, you will have to interpolate between the density values in the table on page 8 of the lab manual.

Final comments

When entering data, type with your fingerds, not wiht youpr thumbds.

Beakers are not volumetric!

Show your cleaned burette to your TA in order to get your data signed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Final final comments
\qquad

Next week: Final Exam, Part 1. \qquad
Bring a calculator! \qquad
\qquad

- Play with the spreadsheet on the Freebies Page. \qquad
- Preliminary write-up 2: copy only first column from big table on page 16.
\qquad
\qquad

