
Learn to use LATEX
In the sciences, many journal publications are written, submitted and type-
set using a program/system called LATEX. LATEX provides many useful fea-
tures for people working in those areas, such as extensive mathematical
typesetting, and separation of format and content (articles are often re-
quired to conform to the journals’ formats). However, LATEX has also been
of use for those in the humanities, who need good multi-lingual support,
cross-referencing, annotations and bibliographies. This exercise is meant
to teach you some basics of LATEX.

Your task:

You must learn how to use LATEX and create a document demonstrating
your proficiency.

First, you should either find a computer that already has LATEX or you
should download and install it. Second, you should find a tutorial to fol-
low and/or reference. Here is a short list, although you should feel free to
find another tutorial if you want.

• Gilbert Bernstein has written a tutorial, Another First LATEX tutorial for
this class, available from the course website.

• David R. Wilkins has written Getting Started with LaTeX which can be
found at http://www.maths.tcd.ie/ dwilkins/LaTeXPrimer/

• For a more standard, albeit all too aptly named tutorial, try The Not
So Short Introduction to LATEX 2ε.

Lastly, you should produce a pdf document satisfying the fol-
lowing requirements and turn it in, along with your .tex file

1. The document should be an ‘article’ with title, author and table of
contents.

2. The first section should be titled “The Riemann Integral” and in-
clude:

• an image depicting the summation of the area of bars under a
curve (This should be an image file. Try the wikipedia page on
integration. Note that the suggested tutorials will not explain

1

how to typeset images. You must figure this out on your own.)

• the following equation, defining the Riemann Integral

∫ b

a
f (x)dx = lim

∆x→0

N

∑
k=0

f (a + k∆x)∆x, where N =
b− a
∆x

make sure that there is sufficient space around ‘where’.

3. A second section with your choice from the following list:

• Learn to use the babel package to typeset another language and
provide a sample.

• Learn to use the AMS packages to produce definition, theorem,
proof style text with consistent numbering. Provide a sample.

• LATEX is actually a Turing-complete. Figure out how to send the
compiler into an infinite loop, include a description of how to
do this, and do it in the same document. Ponder the Gödelian
implications.

• Learn to use the edmac package to produce a critical edition of a
text.

• You may propose other options, provided they’re not slacker
options.

4. A bibliography should be included—BibTeX is strongly recommended.
Include an entry for the source of your Riemann Integral image, and
at least one other entry. Reference the bibliography somewhere in-
side the main text of the document.

2

Another First LATEX Tutorial

Gilbert Bernstein

September 21, 2008

Acknowledgments:
I learned LATEX from David R. Wilkins tutorial, Getting Started with La-

TeX (http://www.maths.tcd.ie/ dwilkins/LaTeXPrimer/). Much of the style of this
tutorial is indebted to his excellent example/code format. Some of the tables of
symbols, though standard information, are taken from his tutorial.

Contents

1 Hello, World! 4

2 Basic Text 5
2.1 Basic Rules . 5
2.2 Whitespace & Paragraphs . 5

2.2.1 Whitespace Rules . 6
2.2.2 Controlling Whitespace 6

2.3 Punctuation, Symbols, and Font Style 7
2.3.1 Quotation Marks . 7
2.3.2 Dashes and Hyphens 8
2.3.3 Special Characters . 8
2.3.4 Accents . 9
2.3.5 Font Style . 9

2.4 Environments . 11
2.4.1 Quote and Quotation 11
2.4.2 Lists . 12
2.4.3 Tables . 13
2.4.4 Comments . 14
2.4.5 Verbatim and Code . 15

1

3 Mathematical Text 16
3.1 Math Mode . 16

3.1.1 Math Fonts . 17
3.1.2 Apostrophes and Primes 17
3.1.3 Subscript and Superscript 18
3.1.4 Summation, Integrals, and Limits 18

3.2 Symbols . 19
3.2.1 Assorted . 19
3.2.2 Greek Letters . 19
3.2.3 Ellipses . 19

3.3 Functions . 20
3.3.1 Function Names . 20
3.3.2 Fractions, Square Roots and Binomials 21
3.3.3 Parentheses, Brackets, etc. 21

3.4 Environments . 22
3.4.1 Equations . 22
3.4.2 Equation Arrays . 22
3.4.3 Arrays . 23

4 Structured Text 24
4.1 Document Structure . 24

4.1.1 Sections, Subsections, Subsubsections, 24
4.1.2 Cross-references . 24
4.1.3 Footnotes . 25
4.1.4 Table of Contents, Title, and Author 26

4.2 Preamble and Global Options 26
4.2.1 Preamble Commands 26
4.2.2 Custom Commands 27
4.2.3 Document Classes . 28

5 BIBTEX 29

6 Exercises 29

2

Before learning how to use TEX, you should have some idea what TEX is
and is not. First and foremost, TEX is not Microsoft Word, or any other
such “word processing” program, although it can be used for many of
the same ends. Rather, TEX is a typesetting program, written by Donald
Knuth, who is a Computer Scientist. Knuth wrote TEX for the purpose
of typesetting his multi-volume work The Art of Computer Programming.
Knuth was very concerned with both the aesthetic and functional quality
of the typesetting, particularly that of the mathematical typesetting. A well
known variant of TEX, titled LATEX was written by Leslie Lamport, and pro-
vides many useful abstractions on top of vanilla TEX. Since it is now the
de facto standard, you will be learning LATEX in this tutorial.

What is LATEX good for?

• LATEX is by far the easiest way to type mathematics into a computer.

• BIBTEX is one of the best choices for managing and typesetting bibli-
ographies.

• LATEX has great facilities for organizing a document into sections and
chapters. You can auto-generate a table of contents and internal page
numbers for cross-references.

• Unfortunately, if you want a lot of control over the placement of your
figures or diagrams, you will find LATEX infuriating. The vast major-
ity of users can make do with the semi-automatic diagram placement
rules.

Fun Facts

• TEX is pronounced tek as in technology, not teks as in Texas.

• Correcting other people’s pronunciation in person is both annoying
and rude.

• Searching for help on LATEX is best done with safe search turned on.

3

1 Hello, World!

Traditionally, the first program you write when learning a new program-
ming language outputs the phrase “Hello, World!” and then quits. As
you will learn, LATEX has a few similarities to programming languages, so
it is only fitting that your first LATEX document be “Hello, World!” Unlike
many programming languages, there is very little cruft between you and
your output:

HelloWorld.tex

Document Type \documentclass{article}

Preamble (empty here)
Beginning of Document \begin{document}

Document Text Hello, World!

End of Document \end{document}

However, you will have to spend some time setting up your “environ-
ment”. If you are using a Macintosh, I recommend trying the program TeX
Shop. On Windows, things will be a tad more difficult. You will certainly
need to get MikTeX, ghostscript, and ghostview (or equivalents). After that,
you may want to install some editor to make your life easier. If you do
so, I strongly recommend against using a WYSIWYG editor while learn-
ing LATEX, since it will largely prevent you from learning. If you use Linux,
you should be able to figure out this part on your own.

Once you have your environment set up, create a new document. It
will be a plain-text file, like you would get in notepad or a similar such
program. TEX documents are typed up in plain-text and then fed through
LATEX proper to produce the final typeset document, so you should get
used to this sort of “compiling” work-flow. When editing a TEX document
you should periodically re-compile to make sure your changes haven’t
broken your document. Syntax errors can prevent successful typesetting.
For instance, try removing any of the parts of HelloWorld.tex as shown
above.

IMPORTANT! Get HelloWorld.tex (shown above) to successfully com-
pile before you proceed.

4

2 Basic Text

When proceeding through this tutorial, you should compile the examples
and try modifying them. Learn by doing.

2.1 Basic Rules

In LATEX you can type most anything you want as a block of text, and it will
be typeset as you would expect. However, there are some special characters
which will not behave as you would expect. This is because they have
some other, special meaning.

\ { } $ ^ % ∼ # &

We’ll return to the special characters later and tell you how to typeset
them safely, but for now, just avoid them.

Isn’t that logo cool? You can typeset LATEX using the back-
slash. When a word is prefixed by a backslash LATEXtreats it as a
command. Commands can do many things. For instance, notice
that second backslash at the end of the first LATEX. When we
omitted it, we got funky spacing...

Isn’t that logo cool? You can typeset \LaTeX\ using

the backslash. When a word is prefixed by a backslash

\LaTeX treats it as a command. Commands can do many

things. For instance, notice that second backslash

at the end of the first \LaTeX. When we omitted it,

we got funky spacing...

2.2 Whitespace & Paragraphs

At first, it seems like LATEX likes to boss you around with whitespace. This
is because LATEX is trying to automatically format and layout your text. The
philosophy is that—to the greatest extent possible—you should focus on
the content when writing, rather than the form.

5

2.2.1 Whitespace Rules

LATEX ignores extra whitespace. No matter how many spaces
you add, you just get one space.

If you want a new paragraph, you need to leave a blank line.
Extra blank lines won’t make any difference.

\LaTeX\ ignores extra

whitespace.

No matter how many spaces you add,

you just get one space.

If you want a new paragraph, you

need to leave a blank line.

Extra blank lines won’t make any difference.

This may seem like an odd choice nowadays, but back in the day, re-
quiring a blank line was a very effective way to denote a new paragraph.
Lines in text files used to have a maximum length of 80 characters. So,
paragraphs would be explicitly broken up into these lines by placing car-
riage returns/new-lines. Because TEX was written back in the 70s and 80s,
it was designed to accommodate such quirks.

2.2.2 Controlling Whitespace

As we saw with the symbol, LATEX, we sometimes want or need
to give TEX more explicit instructions about whitespace. We can
use the backslash followed by a space, possibly in series to pro-
duce extra whitespace characters. We can also use tildes, so that the whites-
pace can’t be used as a line break.
We can keep paragraphs from being indented too. Or, we can
ask for some horizontal space, if we need it. More
frequently useful, however, is vertical space

6

which is great if we want to leave room for hand-drawn diagrams.
We can also force line-breaks with double backslash, although this
is generally bad form.

As we saw with the symbol, \LaTeX, we sometimes want

or need to give \TeX\ more explicit instructions

about whitespace. We can use the backslash followed

by a space, possibly in series\ \ \ to produce extra

whitespace characters.

We~can~also~use~tildes,~so~that~the~whitespace~can’t~be~used~as~a~line~break.

\noindent We can keep paragraphs from being indented

too. Or, we can ask for some

horizontal\hspace{1in}space, if we need it. More

frequently useful, however, is vertical space

\vspace{1in}

\noindent which is great if we want to leave room for

hand-drawn diagrams.\\

We can also force line-breaks with double backslash,

although this is generally bad form.

You can append an asterisk to the \vspace{} or \hspace{} commands
in order to tell LATEX that you absolutely must have the requested space. If
you don’t do this, \vspace{3in} occurring at the end of a page may only
get half an inch. By contrast \vspace*{3in} will always get 3 inches—on
the next page if need be.

2.3 Punctuation, Symbols, and Font Style

2.3.1 Quotation Marks

TEX allows you extra control over quotation marks. My friend
told me, “You can use the left ‘accent’ mark to produce a left
quotation, whereas the normal apostrophe functions as a right
quotation. If you place two of a kind in sequence, you get a
double quote. Maybe then you’ll be able to see what I’m saying.”

\TeX\ allows you extra control over quotation marks.

7

My friend told me, ‘‘You can use the left ‘accent’

mark to produce a left quotation, whereas the normal

apostrophe functions as a right quotation. If you

place two of a kind in sequence, you get a double

quote. Maybe then you’ll be able to see what I’m

saying.’’

2.3.2 Dashes and Hyphens

Dashes come in three varieties: hyphens, en-dashes, and em-
dashes. All three use the short dash or “minus sign” character.
One dash gives you a hyphen, for use in forming compound words.
Two dashes gives you an en-dash, useful for specifying ranges of
page numbers 2–3 and the like. However, if you want to punctuate
your interjections—I know I do—then you should use 3 dashes for
an em-dash. The phrases ‘en-’ and ‘em-’ dash are taken from the
varying width of an ‘n’ and ‘m’ in a typeface/font.

Dashes come in three varieties: hyphens, en-dashes,

and em-dashes. All three use the short dash or

‘‘minus sign’’ character. One dash gives you a

hyphen, for use in forming compound words. Two dashes

gives you an en-dash, useful for specifying ranges of

page numbers 2--3 and the like. However, if you want

to punctuate your interjections---I know I do---then

you should use 3 dashes for an em-dash. The phrases

‘en-’ and ‘em-’ dash are taken from the varying width

of an ‘n’ and ‘m’ in a typeface/font.

2.3.3 Special Characters

For most of the special characters,

{ } $ % # &

you can typeset the character by adding a backslash beforehand. In this
sort of an idiom, the backslash is often referred to as an escape sequence, be-
cause it is being used to escape from the normal meaning of the following
symbol.

8

\{ \} \$ _ \% \# \&

The three you cannot get this way are \, ^ and ∼. You can typeset these
three using the following phrases, which we will not explain.

\backslash \verb|^| \sim

You can also get quite a few other special characters using commands:

œ, Œ \oe, \OE ¿ ?‘ ¶ \P

æ, Æ \ae, \AE ¡ !‘ c© \copyright

å, Å \aa, \AA † \dag £ \pounds

ø, Ø \o, \O ‡ \ddag ı \i

ł, Ł \l, \L § \S \j

ß \ss

2.3.4 Accents

LATEX provides a very convenient mechanism for placing ac-
cents on characters, making it as simple to play piñata as it is to
add excessive ümläüts to your band name.

\LaTeX\ provides a very convenient mechanism for

placing accents on characters, making it as simple to

play pi\~nata as it is to add excessive \"uml\"a\"uts

to your band name.

\’e é \‘e è \^e ê \"o ö \~n ñ
\=o ō \.o ȯ \u{o} ŏ \v{c} č \H{o} ő
\t{oo} �oo \c{c} ç \d{o} o. \b{o} o

¯

2.3.5 Font Style

If you want to really emphasize your words or phrases, you
can enclose them in an emphasis command. Unlike most of the
commands you’ve seen up till now, emphasize, takes an argument.
The following commands with arguments allow you to control the
appearance of your typeface in rather standard ways.

9

If you want to really \emph{emphasize} your words or

phrases, you can enclose them in an emphasis command.

Unlike most of the commands you’ve seen up till now,

\emph{emphasize}, takes an \emph{argument}. The

following commands with arguments allow you to

control the appearance of your typeface in rather

standard ways.

To begin with, there are three basic types of fonts you can
select: Roman, with nice strong serifs, Sans-serif, sleek, modern,
and elegant, and Monospace, mechanical and reliably spaced.
Roman is the default, since serifs make it easier to read large
blocks of text—or so I’m told.

To begin with, there are three basic types of fonts

you can select: \textrm{Roman, with nice strong

serifs}, \textsf{Sans-serif, sleek, modern, and

elegant}, and \texttt{Monospace, mechanical and

reliably spaced}. Roman is the default, since serifs

make it easier to read large blocks of text---or so

I’m told.

To modify these fonts, we can make them bold, italic, or
slanted. We can combine these commands to get bold, slanted
text, or other combinations. We can even make upright, medium-
weight text with special commands, but there’s no real need since
that’s just the default.

To modify these fonts, we can make them \textbf{bold},

\textit{italic}, or \textsl{slanted}. We can combine

these commands to get \textbf{\textit{bold, slanted}}

text, or other combinations. We can even make

\textup{upright}, \textmd{medium-weight} text with

special commands, but there’s no real need since

that’s just the default.

If you want to modify large, possibly multi-paragraph blocks of
text, you should use enclosing curly braces, and drop the ‘text’ prefix
on the command.

10

When you do this, you’re using the curly braces to give you a
so called local scope, so that the formatting command has no effect
outside this scope. If you didn’t do this, the rest of your document
following the command would be sans-serif. Try it!

{\sf If you want to modify large, possibly

multi-paragraph blocks of text, you should use

enclosing curly braces, and drop the ‘text’ prefix on

the command.

When you do this, you’re using the curly braces to

give you a so called \emph{local scope}, so that the

formatting command has no effect outside this scope.

If you didn’t do this, the rest of your document

following the command would be sans-serif. Try it!}

2.4 Environments

Up till now, we’ve seen two major kinds of LATEX commands: plain com-
mands, like \LaTeX and commands requiring an argument, like \emph{}.
Now, we’ll introduce a third kind of command, which uses the \begin{}

\end{} idiom. You’ve seen this idiom before in the \begin{document} and
\end{document} commands that begin and end the main text section of a
LATEX document.

2.4.1 Quote and Quotation

If we want to include a long quote in a document, it is proper
to indent this quotation.

The quote environment is good for short quotes.

Just like that.

However, the quotation environment is more appro-
priate for long, multi-paragraph quotes, since it will
better indent these long quotations.

See what I mean?

If we want to include a long quote in a document, it

11

is proper to indent this quotation.

\begin{quote}

The quote environment is good for short quotes.

\end{quote}

Just like that.

\begin{quotation}

However, the quotation environment is more

appropriate for long, multi-paragraph quotes, since

it will better indent these long quotations.

See what I mean?

\end{quotation}

2.4.2 Lists

LATEX provides three different standard types of list:

1. enumerate for numbered lists

2. itemize for bulleted lists

3. description for named lists, eg. lists of definitions

\LaTeX\ provides three different standard types of

list:

\begin{enumerate}

\item \texttt{enumerate} for numbered lists

\item \texttt{itemize} for bulleted lists

\item \texttt{description} for named lists, eg. lists

of definitions

\end{enumerate}

LATEX provides three different standard types of list:

• enumerate for numbered lists

• itemize for bulleted lists

• description for named lists, eg. lists of definitions

\LaTeX\ provides three different standard types of

list:

12

\begin{itemize}

\item \texttt{enumerate} for numbered lists

\item \texttt{itemize} for bulleted lists

\item \texttt{description} for named lists, eg. lists

of definitions

\end{itemize}

LATEX provides three different standard types of list:

enumerate for numbered lists

itemize for bulleted lists

description for named lists, eg. lists of definitions

\LaTeX\ provides three different standard types of

list:

\begin{description}

\item[enumerate] for numbered lists

\item[itemize] for bulleted lists

\item[description] for named lists, eg. lists

of definitions

\end{description}

2.4.3 Tables

Tables are generated using the tabular environment

r right justified
l left justified
c centered
| vertical line

\begin{tabular}{rl}

\texttt{r} & right justified \\

\texttt{l} & left justified \\

\texttt{c} & centered \\

\texttt{|} & vertical line

\end{tabular}

13

Tables are odd in that they take a second argument to the begin com-
mand. This second argument states what the horizontal format of the table
is going to look like; what columns there are going to be. The table above
describes these choices.

Column breaks are denoted by & ampersands and ends of lines by \\,
double backslash. Horizontal lines may be inserted using the \hline com-
mand. For instance,

Therapists Potent Potables Famous Titles

row 1 $100 $100 $100
row 2 $200 $200 $200
row 3 $300 $300 $300
row 4 $400 $400 $400
row 5 $500 $500 $500

\begin{tabular}{|r||c|c|c|}

\hline

& Therapists & Potent Potables & Famous Titles \\

\hline

\hline

row 1 & \$100 & \$100 & \$100 \\

\hline

row 2 & \$200 & \$200 & \$200 \\

\hline

row 3 & \$300 & \$300 & \$300 \\

\hline

row 4 & \$400 & \$400 & \$400 \\

\hline

row 5 & \$500 & \$500 & \$500 \\

\hline

\end{tabular}

2.4.4 Comments

Sometimes we want to leave notes for ourselves, or we want
to remove parts of the document that we might want to put
back later. Using comments, we can prevent text from being
rendered/typeset. But, if we wait until halfway through the line,

14

Sometimes we want to leave notes for ourselves, or we

want to remove parts of the document that we might

want to put back later. Using comments, we can

prevent text from being rendered/typeset.

% The percent symbol creates single line comments.

But, if we wait until halfway through

the line, % then we only comment the rest of the line.

\begin{comment}

But, if we want to take out large sections of text

all at once, we should really use the comment

environment. This is much more efficient than going

through and placing a percentage symbol at the

beginning of every line.

\end{comment}

2.4.5 Verbatim and Code

If you want to typeset computer code the easiest way to do this is with
the verbatim environment. However, there’s one extra step you have to
do first. We need to add a declaration to the preamble (That’s the part
of your .tex document between the \documentclass{} command and the
\begin{document} command, as indicated in the HelloWorld.tex example
file). Just add the command

\usepackage{verbatim}

somewhere in the preamble. Then you can produce code like this:

// Example.cxx

#include<iostream>

using std::cout;

using std::endl;

int main()

{

cout << "Hello, World!" << endl;

return 0;

}

15

This is done by enclosing the code in \begin{verbatim} and \end{verbatim}.
In fact, this is how I’ve been typesetting the example TEX source, but you
get some self-referential problems if you try to use verbatim to typeset a
use of verbatim.

3 Mathematical Text

3.1 Math Mode

LATEX’s great strength is it’s mathematical typesetting. This is accomplished
by entering the so called Math mode.

The recursive relation f (n) = f (n− 1) + f (n− 2) defines the
Fibonacci Numbers when f (0) = 0 and f (1) = 1.

The recursive relation $f(n)=f(n-1)+f(n-2)$ defines

the Fibonacci Numbers when $f(0)=0$ and $f(1)=1$.

Sometimes you want to center mathematical formulas, rather than just
place them in-line. This can be done by using one of two different nota-
tions, both of which produce the same result:

The recursive relation

f (n) = f (n− 1) + f (n− 2)

defines the Fibonacci Numbers when f (0) = 0 and f (1) = 1.

The recursive relation

$$f(n)=f(n-1)+f(n-2)$$

defines the Fibonacci Numbers when $f(0)=0$

and $f(1)=1$.

The recursive relation

\[

f(n)=f(n-1)+f(n-2)

\]

defines the Fibonacci Numbers when $f(0)=0$

and $f(1)=1$.

16

3.1.1 Math Fonts

In math mode, letters are italicized by default, since they are assumed to
represent variable names like x and y. However, sometimes we would like
to use alphabetic characters in other ways, or modify their appearance.

In this book, we will use boldface lower-case letters for vectors,
ex. v, boldface upper case letters for matrices, ex. A, and regular
lower-case letters for scalars, ex c. Together, w = cAv.

In this book, we will use boldface lower-case letters

for vectors, ex. \mathbf{v}, boldface upper-case

letters for matrices, ex. ${\mathbf A}$, and regular

lower-case letters for scalars, ex c. Together,

$\mathbf{w}=c\mathbf{Av}$.

You can use a special cursive font, but only for capital let-
ters: P(X). You can also typeset some capitals in “blackboard”
font, although this requires including the amsfonts package. For
example, R is the same cardinality as P(N).

You can use a special cursive font, but only for

capital letters: $\mathcal{P}(X)$. You can also

typeset some capitals in ‘‘blackboard’’ font, although

this requires including the \texttt{amsfonts} package.

For example, \mathbb{R} is the same cardinality as

$\mathcal{P}(\mathbb{N})$.

3.1.2 Apostrophes and Primes

In math mode, apostrophes do not create quotations. Instead
they create “primes” as in x′, x′′ and x′′′.

In math mode, apostrophes do not create quotations.

Instead they create ‘‘primes’’ as in $x’, x’’$

and $x’’’$.

17

3.1.3 Subscript and Superscript

When doing mathematics, we often want to place superscripts
and subscripts on our characters. For instance, x2 = xx, and
(x1, x2, x3). If we want to put more than one character in the
super or subscript, then we need only group together symbols in
curly braces: eix and xi+1.

When doing mathematics, we often want to place

superscripts and subscripts on our characters. For

instance, $x^2=xx$, and (x_1,x_2,x_3). If we want

to put more than one character in the super or

subscript, then we need only group together symbols

in curly braces: e^{ix} and x_{i+1}.

3.1.4 Summation, Integrals, and Limits

When we typeset summations, integrals and limits, we would
like to place text beneath and/or above. We can do this using
superscript and subscript notation.

n

∑
i=0

xi

However, if this is done inline, ∑n
i=0 xi, then the superscript and

subscript are typeset as such, so that the formula doesn’t disrupt
the line spacing on the page.

When we typeset summations, integrals and limits, we

would like to place text beneath and/or above. We

can do this using superscript and subscript notation.

$$\sum_{i=0}^nx_i$$

However, if this is done inline, $\sum_{i=0}^nx_i$,

then the superscript and subscript are typeset as

such, so that the formula doesn’t disrupt the line

spacing on the page.

18

3.2 Symbols

3.2.1 Assorted

For brevity, I will not include a complete list of symbols here. There are
many good symbol lists you can find online. Instead, I’ll note a couple of
symbols of common use or particular interest.

∀ \forall ∃ \exists ¬ \neg ⇐⇒ \iff

∪ \cup ∩ \cap ⊆ \subseteq ∅ \emptyset

≤ \leq ≥ \geq 6= \not= 6= \neq

〈 \langle 〉 \rangle b \lfloor c \rfloor

∇ \nabla ∂ \partial
∫

\int ∞ \infty

∑ \sum × \times ◦ \circ ≈ \approx

→ \rightarrow ⇒ \Rightarrow

3.2.2 Greek Letters

Since mathematical formulas often contain greek letters, TEX provides a
simple system. A complete list of greek letters, like a list of mathematical
symbols, can be found many places online.

The Euler phi function is, rather obviously denoted φ(n), al-
though one will often see the variation ϕ(n) appear in mathe-
matics texts. When the upper case Greek characters look sub-
stantially different from English characters, they can be typeset
using a capitalized letter name, as in ∆ or Ω.

The Euler phi function is, rather obviously denoted

$\phi(n)$, although one will often see the variation

$\varphi(n)$ appear in mathematics texts. When the

upper case Greek characters look substantially

different from English characters, they can be

typeset using a capitalized letter name, as in

Δ or Ω.

3.2.3 Ellipses

Very often we would like to use ellipses in math to suggest the presence
of many more terms than we are willing to write out. Different ellipses
commands align the dots with the center or bottom of the text

19

Let x = (x1, x2, . . . , xn) be an n-dimensional vector. Then
the number |x1| + |x2| + · · ·+ |xn| is called the manhattan, or
taxi cab length.

Let $x=(x_1,x_2,\ldots,x_n)$ be an n-dimensional

vector. Then the number $|x_1|+|x_2|+\cdots+|x_n|$

is called the manhattan, or taxi cab length.

3.3 Functions

3.3.1 Function Names

Because all of the text in math mode is assumed to represent variables, we
need to do something different for function names.

Some common functions are built in:

lim
x→0

sin(2πx)

In the general case, you can format math text to make it non-
italicized:

y = modify(x)

However, if you want to put text between symbols, you should
use mbox or textrm: x = n or 0. Note that you need to pad the
text with space, or it will come out funky: x = nor0.

Some common functions are built in:

$$\lim_{x\to0}\sin(2\pi x)$$

In the general case, you can format math text to make

it non-italicized:

$$y=\mathrm{modify}(x)$$

However, if you want to put text between symbols, you

should use \texttt{mbox} or \texttt{textrm}:

$x=n\mbox{ or }0$. Note that you need to pad the

text with space, or it will come out funky:

$x=n\mbox{or}0$.

20

3.3.2 Fractions, Square Roots and Binomials

Special commands with arguments are provided for fractions and square
roots:

d
√

x
dx

=
1

2
√

x

$$\frac{d\sqrt{x}}{dx}=\frac{1}{2\sqrt{x}}$$

Using the amsmath package, you can also typeset binomials:(
n
k

)
=

n!
k!(n− k)!

$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$

3.3.3 Parentheses, Brackets, etc.

In typing mathematics, we use many different enclosing symbols:

[n] = {1, 2, . . . , n}

$$[n]=\{1,2,\ldots,n\}$$

|〈x1, x2〉+ 〈1, 1〉| =
√

(x1 + 1)2 + (x2 + 1)2

$$|\langle x_1, x_2\rangle+\langle1,1\rangle|

=\sqrt{(x_1+1)^2+(x_2+1)^2}$$

Sometimes they are nested deeply, and we would like to size them ap-
propriately:

3.245 = 3 + (
1

4 + (1
12+(1

4)
)
)

$$3.245=3+(\frac{1}{4+(\frac{1}{12+(\frac{1}{4})})})$$

21

To do so, we use the left and right commands:

3.245 = 3 +

 1

4 +
(

1
12+(1

4)

)

$$3.245=3+\left(\frac{1}{4+\left(

\frac{1}{12+\left(\frac{1}{4}\right)}\right)}\right)$$

3.4 Environments

3.4.1 Equations

LATEX provides for automatic numbering of equations for later
reference. This is done using the equation environment.

π = 3.14159265358979323846 . . . (1)

If an asterisk is added, then the numbering is suppressed.

π = 3.14159265358979323846 . . .

\LaTeX\ provides for automatic numbering of equations

for later reference. This is done using the

\texttt{equation} environment.

\begin{equation}

\pi=3.14159265358979323846\ldots

\end{equation}

If an asterisk is added, then the numbering is

suppressed.

\begin{equation*}

\pi=3.14159265358979323846\ldots

\end{equation*}

3.4.2 Equation Arrays

Equation arrays are perfect for long derivations, or lists of equations. Again,
the asterisk suppresses numbering. Columns and Line Breaks are done
like tables and arrays.

22

S(x) =
∞

∑
k=0

xk

= 1 + x + x2 + x3 + · · ·
xS(x) = x + x2 + x3 + · · ·

S(x)− xS(x) = 1

S(x) =
1

1− x
\begin{eqnarray*}

S(x) & = & \sum_{k=0}^\infty x^k \\

&=& 1+x+x^2+x^3+\cdots\\

xS(x) &=& x+x^2+x^3+\cdots\\

S(x) - xS(x)& = & 1 \\

S(x) &=& \frac{1}{1-x}

\end{eqnarray*}

3.4.3 Arrays

Similar to tables in normal text, we have arrays in math mode. Arrays are
very helpful for typesetting matrices and piecewise functions:∣∣∣∣∣∣

i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ = v× w

\[

\left|\begin{array}{ccc}

i & j & k \\

v_1 & v_2 & v_3 \\

w_1 & w_2 & w_3

\end{array}\right|

= v\times w

\]

sign(x) =

1, x > 0
0, x = 0
−1, x < 0

23

\[

\textrm{sign}(x)=\left\{\begin{array}{ll}

1, & x>0 \\

0, & x=0 \\

-1, & x<0

\end{array}\right.

\]

4 Structured Text

In the preceding two sections, you learned LATEX basics and how to typeset
math. However, the perspective was on the micro-structure, roughly on
the level of one or two paragraphs. This section of the tutorial is primarily
about the macro-structure of your LATEX document.

4.1 Document Structure

4.1.1 Sections, Subsections, Subsubsections, ...

One of the big advantages of LATEX, is that you can explicitly encode the
structure of your document, using the commands

\section{} \subsection{} \subsubsection{}

When one of these commands is invoked a numbered heading is gener-
ated with the name given by the command’s argument. For instance, if
you wanted your document to have a section on spatulas, you just need
to place the command \section{Spatulas} right before the text of your
scintillating study on spatulas.

LATEX will automatically number the sections, subsections, etc. of your
document, unless you suppress the numbering by adding an asterisk to
the command: \section*{Numberless} However, we can put all these
numbers to good use for cross references.

4.1.2 Cross-references

In LATEX we don’t type

see section 2

24

Instead we type

see section \ref{spat sec}

and place the command \label{spat sec} right after the \section{Spatulas}
command. For instance,

\section{Herman the Hero}

\label{herman}

Herman was just an ordinary man, until one day...

As you can see, the contents of the label command are rather arbitrary.
We’re just declaring some name, some label for later reference.

By using labels rather than static references, we’re de-coupling our
cross-references from the document layout. Suppose we’re about to “go
to press” (eg. holy crap, the assignment’s due in 10 minutes) and we de-
cide that section 3 should really come before section 2. If we typed in all
those cross-references by hand, then they would all be “broken” and we
would have to go correct them all by hand. With label and ref, we just
cut and paste section 3 in front of section 2 and the entire document gets
renumbered automatically when we compile. Cool!

Warning! You will likely have to compile 2 or 3 times before all of the
page references resolve. I won’t explain why, because that’s pretty boring,
but you should know that this is the case.

We can use this same mechanism to make page references too. Instead
of \label, we use the command \pageref

...which is why they eat cantelope under the

full moon every 2 weeks. This ceremony is known as the

\textbf{recantelope}\pageref{recantelope def}. This is

a very ...

...in many ways very similar to the recantelope

(see page \ref{recantelope def}).

4.1.3 Footnotes

If you want to place footnotes in your document1, then all you need to do
is place the footnote command inline with your text:

1and who wouldn’t?

25

\footnote{and who wouldn’t?}

The footnote command will get replaced by a number referencing the
footnote, and the text will be automatically placed at the bottom of the
page. LATEX will handle all of the numbering for you.

4.1.4 Table of Contents, Title, and Author

Once the document is suitably structured, a table of contents may be au-
tomatically generated by placing the command

\tableofcontents

at the point in the document where you want the table of contents to be.
We can also generate a nicely typeset title and author name, using the

commands title, author, and maketitle. Other options like the date, and
e-mail address can also be specified, though they won’t be here.

\title{World Domination}

\author{Dr. Death}

\maketitle

4.2 Preamble and Global Options

4.2.1 Preamble Commands

In our Hello World example, the preamble is the part of our document that
resides between the initial \documentclass command and the \begin{document}
command.

HelloWorld.tex

\documentclass{article}

The Preamble →
\begin{document}

Hello, World!

\end{document}

26

The preamble is where we put global commands to alter the entirety
of the generated document, rather than the local text. Perhaps the most
important preamble command to know is \usepackage{}. This command
allows you to enable extra features for your LATEX document. A number of
packages have come up during this tutorial. Often the safest thing to do is
err on the side of using superfluous packages.

\usepackage{verbatim}

\usepackage{amsfonts}

\usepackage{amsmath}

4.2.2 Custom Commands

We can also use the preamble to define our own commands. Occasionally
this will save you time typing in long obnoxious commands. One very
common example in math, is to use the “blackboard” letters R, Z, Q, C to
denote sets of numbers (the reals, integers, rationals, and complex num-
bers here—if you’re curious). Normally this would require typing in

\mathbb{R}

every time we wanted the blackboard R. However, we can define a new
command with the name \R so that we need only type \R to get a black-
board R. This is done using the \def “meta-command”

\def\R{\mathbb{R}}

Def says to create a new command with name \R, which, when invoked,
will be replaced by the text in between the braces.

However, sometimes we would also like to define commands that take
arguments. For instance, suppose that I am writing an introductory Bi-
ology text and want to typeset all of my terminology definitions in bold,
so that they may be more easily picked out from a large block of text. I
could wrap all of these definitions in explicit \textbf{} commands, but
this is not a very extensible or flexible approach. For instance, I may later
decide that boldface is too brash and distracting from the rest of the text
and wish to change all of my definitions to italicized text. I do not want to
hunt down every definition to change boldface commands to italicization

27

commands. Instead I can define a terminology command, centralizing, or
factoring out this decision from my text.

\newcommand{\term}[1]{\textbf{#1}}

Let’s break this down. The newcommand command takes three arguments.
The first is the name of the command to be created, \term in this case,
wrapped in curly braces. Then, a number is placed in square braces. This
number tells newcommand how many arguments the new command is sup-
posed to take. Finally, the text that replaces the command invocation is
specified, just as before. The difference is that we can now use the special
sequences #1, #2, etc. to specify where the arguments should be added in.

Chromosomes are organized structures of DNA and proteins
that are found in cells.

\term{Chromosomes} are organized structures of DNA and

proteins that are found in cells.

Now you need only change the command definition to change how all
of the terminology is typeset. However, you can even do one better. One
would often like to refer back to definitions with a page number reference.
We can roll this into our command:

\newcommand{\term}[1]{\textbf{#1}\pageref{#1}}

Now, you can invoke \ref{Chromosomes} to produce the page number of
the chromosome definition. You could even go a step further and instead
define \term to take two arguments: one the word to be type-set and one
for the label name.

\newcommand{\term}[2]{\textbf{#1}\pageref{#2}}

4.2.3 Document Classes

One can change many things about the appearance of a LATEXdocument
merely by changing the documentclass command. For instance, our cur-
rent Hello World example uses the article document class. Besides article,
we can also use book for longer format documents and letter for shorter

28

format documents. Changing this option will then change what struc-
turing commands are available. In book we gain the \chapter command
in addition to section and subsection. In letter, we lose sections and
subsections altogether, since there is no need to structure such a small doc-
ument.

The documentclass command also allows us to specify extra parame-
ters as options, using the square brackets. For example,

\documentclass[12pt, a4paper, titlepage]{article}

Besides the rather obvious control on font size, you can add one of
the different paper sizes to produce an appropriately sized document:
a4paper, letterpaper, a5paper, b5paper, executivepaper, legalpaper.
You can also add one of the commands, titlepage or notitlepage, to
alter or supress the default behavior. You may also use one of the two
onecolumn, twocolumn. This is only a partial list of possible options.

5 BIBTEX

6 Exercises

29

