This print-out should have 40 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

LDE Carbon Allotropes 001 0015.0 points

Based on your knowledge of carbon allotropes, You can say that ΔG_{f}° of graphite is
\qquad and $\Delta G_{r x n}^{\circ}$ of diamond \rightarrow graphite is
\qquad

1. zero, large
2. small, negative
3. large, small
4. positive, positive
5. zero, negative correct
6. large, zero

Explanation:

The standard state of carbon is graphite; consequently, graphite's standard free energy of formation is zero. Diamond is actually thermodynamically less stable than graphite; consequently, diamond's reversion to graphite is spontaneous.

First Law Thermo 01
 0025.0 points

What is true about the first law of thermodynamics?

1. $\Delta E_{\text {univ }}=0$ correct
2. $\Delta E_{\text {univ }}>0$
3. $\Delta E_{\text {univ }}<0$
4. $\Delta E_{\mathrm{sys}}<0$
5. $\Delta E_{\mathrm{sys}}>0$
6. $\Delta E_{\mathrm{sys}}=0$

Explanation:

Msci 150505
0035.0 points

For a reaction in which gases are neither produced nor consumed, ΔH is

1. the same as ΔE. correct
2. less than ΔE.
3. unrelated to ΔE.
4. greater than ΔE.

Explanation:

For a reaction at constant temperature and constant pressure, $\Delta E=\Delta H-(\Delta n) R T$.
If gases are neither produced nor consumed, Δn will be zero, so ΔE must equal ΔH.

Spontaneous Endo Signs alt

0045.0 points

What are the signs of $\Delta S_{\text {surr }}, \Delta S_{\text {sys }}$, and $\Delta S_{\text {univ }}$, respectively, for a spontaneous endothermic reaction?
1.,,-++ correct
2.,,+--
3.,,+++
4. Cannot be predicted with certainty from the given information
5.,,-+-

Explanation:

Thermo Signs
 0055.0 points

When water condenses, what are the signs for q, w, and $\Delta S_{\text {sys }}$, respectively?
1.,,+-+
2.,,-++
3.,,+--
4.,,-+- correct
5.,,++-
6.,,+++

Explanation:

LDE Definitions in Thermo 011
 $006 \quad 5.0$ points

Which of the following state functions are extensive?
I) Pressure (P)
II) Temperature (T)
III) Enthalpy (H)

1. II, III
2. None are true
3. II only
4. I only
5. I, II
6. I, III
7. III only correct
8. I, II, III

Explanation:

Examples of extensive state functions include: mass, volume, enthalpy, entropy, internal energy, free energy etc.

Heat of Formation

0075.0 points

Which of
$\mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\ell), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{H}_{2} \mathrm{O}(\ell)$
have a heat of formation equal to zero?

1. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\ell)$
2. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$ correct
3. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
4. All of them, but only at absolute zero
5. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\ell), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, $\mathrm{H}_{2} \mathrm{O}(\ell)$

Explanation:

Molecules in their native state at STP have a heat of formation of zero.

CIC Specific Heat 1 W
 0085.0 points

Consider the following specific heats: copper, $0.384 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; lead, $0.159 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; water, 4.18 $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; glass, $0.502 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Which substance, once warmed, would be more likely to maintain its heat and keep you warm through a long football game on a cold night?

1. copper
2. water correct
3. lead
4. glass

Explanation:

Water has the highest specific heat of the substances listed, so it has the capacity to emit the largest quantity of heat with minimal temperature loss; the emitted heat keeps you warm. The substance continues to warm you until its temperature is at or below your body temperature.

Mlib 050003
 0095.0 points

4.7 g of a hydrocarbon fuel is burned in a calorimeter that contains 263 grams of water initially at $25.00^{\circ} \mathrm{C}$. After the combustion, the temperature is $26.55^{\circ} \mathrm{C}$. How much heat is evolved per gram of fuel burned? The heat capacity of the calorimeter (hardware only) is $92.3 \mathrm{~J} /{ }^{\circ} \mathrm{C}$.

1. $362 \mathrm{~J} / \mathrm{g}$
2. $393 \mathrm{~J} / \mathrm{g}$ correct
3. $143 \mathrm{~J} / \mathrm{g}$
4. $6246 \mathrm{~J} / \mathrm{g}$
5. $27652 \mathrm{~J} / \mathrm{g}$
6. $5883 \mathrm{~J} / \mathrm{g}$
7. $1848 \mathrm{~J} / \mathrm{g}$
8. $1705 \mathrm{~J} / \mathrm{g}$

Explanation:
$\mathrm{m}_{\text {fuel }}=4.7 \mathrm{~g} \quad \mathrm{~m}_{\text {water }}=263 \mathrm{~g}$ $\Delta T=26.55^{\circ} \mathrm{C}-26.00^{\circ} \mathrm{C}=1.55^{\circ} \mathrm{C}$

The amount of heat evolved by the reaction is equal to the amount of heat gained by the water plus the amount of heat gained by the calorimeter.

The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, so we have to multiply by grams and temperature change in order to obtain Joules:

$$
\begin{aligned}
\Delta H \text { of water }= & (\mathrm{SH})\left(\mathrm{m}_{\text {water }}\right)(\Delta T) \\
= & \left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)(263 \mathrm{~g}) \\
& \times\left(1.55^{\circ} \mathrm{C}\right) \\
= & 1705 \mathrm{~J}
\end{aligned}
$$

The heat capacity of the calorimeter is 92.3 $\mathrm{J} /{ }^{\circ} \mathrm{C}$. This is not per gram, so we just have to multiply by the temperature change to get Joules:

$$
\begin{aligned}
\Delta H \text { of calorimeter } & =(\mathrm{SH})(\Delta T) \\
& =\left(92.3 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(1.55^{\circ} \mathrm{C}\right) \\
& =143 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
\Delta H \text { of } \mathrm{rxn}= & \Delta H \text { of water } \\
& +\Delta H \text { of calorimeter } \\
= & 1705 \mathrm{~J}+143 \mathrm{~J}=1848 \mathrm{~J}
\end{aligned}
$$

This is the amount of heat evolved. To get the amount per gram of fuel burned, we divide ΔH of the reaction by the amount of fuel burned (4.7 grams):

$$
\frac{1848 \mathrm{~J}}{4.7 \mathrm{~g}}=393 \mathrm{~J} / \mathrm{g}
$$

LDE Bomb Calorimeter 007
 $010 \quad 5.0$ points

If 25.0 g of water at $100.0^{\circ} \mathrm{C}$ are mixed with 15.0 g of water at $40.0^{\circ} \mathrm{C}$, what temperature will the 40.0 g of combined water be at once they reach equilibrium?

1. $70.0^{\circ} \mathrm{C}$
2. $62.5^{\circ} \mathrm{C}$
3. $60.0^{\circ} \mathrm{C}$

4. $77.5^{\circ} \mathrm{C}$ correct

Explanation:

$q_{\text {cold }}=-q_{\text {hot }}$
$15 \cdot 4.184 \cdot\left(T_{f}-40\right)=-25 \cdot 4.184 \cdot\left(T_{f}-100\right)$
$15 \cdot\left(T_{f}-40\right)=-25 \cdot\left(T_{f}-100\right)$
$40 \cdot T_{f}=3100$
$T_{f}=77.5^{\circ} \mathrm{C}$

ChemPrin3e 0658
 0115.0 points

Calculate the standard reaction enthalpy for the reaction of calcite with hydrochloric acid

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\underset{\mathrm{CaCl}_{2}(\mathrm{aq})}{2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow} \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})
$$

The standard enthalpies of formation are:

$$
\begin{aligned}
& \text { for } \mathrm{CaCl}_{2}(\mathrm{aq}):-877.1 \mathrm{~kJ} / \mathrm{mol} \text {; } \\
& \text { for } \mathrm{H}_{2} \mathrm{O}(\ell):-285.83 \mathrm{~kJ} / \mathrm{mol} \text {; } \\
& \text { for } \mathrm{CO}_{2}(\mathrm{~g}):-393.51 \mathrm{~kJ} / \mathrm{mol} \text {; } \\
& \text { for } \mathrm{CaCO}_{3}(\mathrm{~s}):-1206.9 \mathrm{~kJ} / \mathrm{mol} \text {; } \\
& \text { and for } \mathrm{HCl}(\mathrm{aq}):-167.16 \mathrm{~kJ} / \mathrm{mol} \text {. }
\end{aligned}
$$

1. $-215 \mathrm{~kJ} / \mathrm{mol}$
2. $-116 \mathrm{~kJ} / \mathrm{mol}$
3. $-98.8 \mathrm{~kJ} / \mathrm{mol}$
4. $-165 \mathrm{~kJ} / \mathrm{mol}$
5. $-38.2 \mathrm{~kJ} / \mathrm{mol}$
6. $-72.7 \mathrm{~kJ} / \mathrm{mol}$
7. $-15.2 \mathrm{~kJ} / \mathrm{mol}$ correct

Explanation:

We use Hess' Law:

$$
\begin{aligned}
\Delta H^{\circ}= & \sum n \Delta H_{\mathrm{j}, \mathrm{prod}}^{\circ}-\sum n \Delta H_{\mathrm{j}, \mathrm{reac}}^{\circ} \\
= & \Delta H_{\mathrm{f}, \mathrm{CaCl}_{2}(\mathrm{aq})}^{\circ}+\Delta H_{\mathrm{f}, \mathrm{H}_{2} \mathrm{O}(\ell)}^{\circ} \\
& +\Delta H_{\mathrm{f}, \mathrm{CO}_{2}(\mathrm{~g})}^{\circ}-\left[\Delta H_{\mathrm{f}, \mathrm{CaCO}_{3}(\mathrm{~s})}^{\circ}\right. \\
& \left.+2\left(\Delta H_{\mathrm{f}, \mathrm{HCl}(\mathrm{aq})}^{\circ}\right)\right] \\
= & -877.1 \mathrm{~kJ} / \mathrm{mol}+(-285.83 \mathrm{~kJ} / \mathrm{mol}) \\
& +(-393.51 \mathrm{~kJ} / \mathrm{mol}) \\
& -[-1206.9 \mathrm{~kJ} / \mathrm{mol} \\
= & +15.22 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

ChemPrin3e 0660

$012 \quad 5.0$ points

Calculate the reaction enthalpy for the formation

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s}),
$$

of anhydrous aluminum chloride using the data
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow$

$$
2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

$$
\Delta H^{\circ}=-1049 \mathrm{~kJ}
$$

$\mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{HCl}(\mathrm{aq}) \quad \Delta H^{\circ}=-74.8 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g}) \Delta H^{\circ}=-185 \mathrm{~kJ}$
$\mathrm{AlCl}_{3}(\mathrm{~s}) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{aq}) \quad \Delta H^{\circ}=-323 \mathrm{~kJ}$

1. -1826.2 kJ
2. -1406.8 kJ correct
3. -1450.85 kJ
4. -1502.4 kJ
5. -1883.5 kJ
6. -1225.7 kJ
7. -1100.36 kJ

Explanation:

Using Hess' Law:
The desired reaction is obtained by adding reaction $1 ; 6$ times reaction $2 ; 3$ times reaction 3 ; and 2 times the reverse of reaction 4 :

$$
\begin{gathered}
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \\
2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g}) \\
\Delta H^{\circ}=-1049 \mathrm{~kJ} \\
6 \mathrm{HCl}(\mathrm{~g}) \longrightarrow 6 \mathrm{HCl}(\mathrm{aq}) \\
\Delta H^{\circ}=6(-74.8 \mathrm{~kJ})=-448.8 \mathrm{~kJ} \\
3 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{HCl}^{(\mathrm{g})} \\
\Delta H^{\circ}=3(-185 \mathrm{~kJ})=-555 \mathrm{~kJ} \\
2 \mathrm{AlCl}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s}) \\
\Delta H^{\circ}=2(323 \mathrm{kJJ})=646 \mathrm{~kJ} \\
\hline 2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s}) \\
\Delta H^{\circ}=-1406.8 \mathrm{~kJ}
\end{gathered}
$$

Internal Energy
 0135.0 points

What are the translational and rotational energies, respectively, for a mole of I_{3}^{-}?

1. $\frac{3}{2} R T, R T$ correct
2. $\frac{3}{2} k T, \frac{3}{2} k T$
3. $\frac{3}{2} R T, \frac{3}{2} R T$
4. $3 R T, 3 R T$
5. $\frac{3}{2} k T, k T$

Explanation:

Translational Energy

$014 \quad 5.0$ points
What is the internal energy associated with the translation of six water molecules?

1. $3 R T$
2. $18 k T$
3. $9 k T$ correct
4. $9 R T$

5. $6 k T$

Explanation:

The energy is $\frac{3}{2} k T$ per mole, so for the six water molecules,

$$
6\left(\frac{3}{2} k T\right)=9 k T
$$

ChemPrin3e T02 50

0155.0 points

Estimate the heat released when ethene $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ reacts with HBr to give $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$. Bond enthalpies are
$\mathrm{C}-\mathrm{H}: 412 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{C}-\mathrm{C}: 348 \mathrm{~kJ} / \mathrm{mol}$; $\mathrm{C}=\mathrm{C}: 612 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{C} — \mathrm{Br}: 276 \mathrm{~kJ} / \mathrm{mol}$; $\mathrm{Br}-\mathrm{Br}: 193 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{H} — \mathrm{Br}: 366 \mathrm{~kJ} / \mathrm{mol}$.

1. $470 \mathrm{~kJ} / \mathrm{mol}$
2. $200 \mathrm{~kJ} / \mathrm{mol}$
3. $424 \mathrm{~kJ} / \mathrm{mol}$
4. $58 \mathrm{~kJ} / \mathrm{mol}$ correct
5. $1036 \mathrm{~kJ} / \mathrm{mol}$

Explanation:

$$
\begin{aligned}
\Delta H= & \sum E_{\text {break }}-\sum E_{\text {make }} \\
= & {[(\mathrm{C}=\mathrm{C})+(\mathrm{H}-\mathrm{Br})] } \\
& -[(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{Br})+(\mathrm{C}-\mathrm{C})] \\
= & (612 \mathrm{~kJ} / \mathrm{mol}+366 \mathrm{~kJ} / \mathrm{mol}) \\
& -[412 \mathrm{~kJ} / \mathrm{mol}+276 \mathrm{~kJ} / \mathrm{mol} \\
& +348 \mathrm{~kJ} / \mathrm{mol}] \\
= & -58 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

so $58 \mathrm{~kJ} / \mathrm{mol}$ of heat was released.

Msci 150107
 $016 \quad 5.0$ points

The pressure-volume work done by an ideal gaseous system at constant volume is

1. $-V \Delta P$
2. $-\frac{\Delta P}{P}$
3. zero correct
4. q
5. $-\Delta E$

Explanation:

When $V=$ constant, nothing moves through a distance and therefore no work is done: $w=0$.

Msci 150115

$017 \quad 5.0$ points
Consider the reaction

$$
\mathrm{Ni}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})
$$

Assuming the gases are ideal, calculate the work done on the system at a constant pressure of 1 atm at $75^{\circ} \mathrm{C}$ for the conversion of 1.00 mole of Ni to $\mathrm{Ni}(\mathrm{CO})_{4}$.

1. $1.16 \times 10^{4} \mathrm{~J}$
2. $2.89 \times 10^{3} \mathrm{~J}$
3. $5.79 \times 10^{3} \mathrm{~J}$
4. $1.80 \times 10^{3} \mathrm{~J}$
5. $8.68 \times 10^{3} \mathrm{~J}$ correct
6. $1.87 \times 10^{3} \mathrm{~J}$

Explanation:

$T=75^{\circ} \mathrm{C}+273=348 \mathrm{~K} \quad n_{\mathrm{Ni}}=1 \mathrm{~mol}$
$n_{\mathrm{i}}=1 \mathrm{~mol} \mathrm{Ni} \cdot \frac{4 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Ni}}=4 \mathrm{~mol}$
$n_{\mathrm{f}}=1 \mathrm{~mol} \mathrm{Ni} \cdot \frac{1 \mathrm{~mol} \mathrm{Ni}(\mathrm{CO})_{4}}{1 \mathrm{~mol} \mathrm{Ni}}=1 \mathrm{~mol}$

$$
\begin{aligned}
\Delta n= & (1-4) \mathrm{mol}=-3 \mathrm{~mol} \\
\qquad & =-P \Delta V=-\Delta n R T \\
& =-(-3 \mathrm{~mol}) \cdot \frac{8.31451 \mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 348 \mathrm{~K} \\
& =8680.35 \mathrm{~J}
\end{aligned}
$$

LDE Thermodynamic Theory 008
 $018 \quad 5.0$ points

From the standpoint of statistical thermodynamics what is the fundamental origin of internal energy?

1. The motion of individual molecules and the energy associated with that motion. correct
2. The observation that the entropy of the universe is always increasing.
3. The observation that the energy in the universe is conserved.
4. The presence of small amounts of entropy in any non-ideal solid even at absolute zero.

Explanation:

$\mathrm{E}=0.5 \mathrm{kT}$ is the fundamental relation between motion and internal energy.

Bomb Calorimetry 0195.0 points

Which of the following is NOT a feature of the bomb calorimetry apparatus used to measure the internal energy of a reaction?

1. The thermometer is inserted directly into the reaction vessel to measure ΔT of the reaction. correct
2. The volume of the reaction vessel is held constant to eliminate energy released as work.
3. The large heat capacity of water is beneficial in measuring heat released by combustion reactions.
4. Large quantities of water surrounding the
reaction vessel absorb the majority of the heat loss.
5. The heat capacity of the calorimeter should be known to accurately correct for any heat lost to it.

Explanation:

The thermometer is placed in the water that surrounds the reaction vessel.

ChemPrin3e T06 10
 $020 \quad 5.0$ points

A CD player and its battery together do 500 kJ of work, and the battery also releases 250 kJ of energy as heat and the CD player releases 50 kJ as heat due to friction from spinning. What is the change in internal energy of the system, with the system regarded as the battery and CD player together?

1. -200 kJ
2. -750 kJ
3. -800 kJ correct
4. -700 kJ
5. +200 kJ

Explanation:

Heat from the CD player is -50 kJ .
Heat from the battery is -500 kJ .
Work from both together on the surroundings is -250 kJ .

This question is testing your ability to see what the system is, and then look at ONLY the energy flow for the system. Here the system is the battery and the CD player together.

$$
\begin{aligned}
\Delta U & =q+w \\
& =[-50 \mathrm{~kJ}+(-250 \mathrm{~kJ})]+(-500 \mathrm{~kJ}) \\
& =-800 \mathrm{~kJ}
\end{aligned}
$$

ChemPrin3e T07 33
 0215.0 points

Which of the following reactions has the largest value of $\Delta \mathrm{S}^{\circ}$?

$$
\text { 1. } \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

2. $2 \mathrm{H}_{2}(\ell)+\mathrm{O}_{2}(\ell) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

3. $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ correct
4. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
5. $\mathrm{K}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{KO}_{2}(\mathrm{~s})$

Explanation:

We can predict the sign and magnitude of ΔS by noting the relative order of entropy: solids (lowest) $<$ liquids $<$ solutions $<$ gases (highest) and the number of moles of each type. For the reactions given we have
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
2 mol gas $\rightarrow 1 \mathrm{~mol}$ solid; $\Delta S<0$
$2 \mathrm{H}_{2}(\ell)+\mathrm{O}_{2}(\ell) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3 mol liquid $\rightarrow 2 \mathrm{~mol}$ gas; $\Delta S>0$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
4 mol gas $\rightarrow 2 \mathrm{~mol}$ gas; $\Delta S<0$
$\mathrm{K}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{KO}_{2}(\mathrm{~s})$
1 mol solid +1 mol gas $\rightarrow 1 \mathrm{~mol}$ solid;
$\Delta S<0$
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
1 mol solid $\rightarrow 1 \mathrm{~mol}$ solid +1 mol gas;
$\Delta S>0$
The greatest increase in S would be for the reaction
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

ChemPrin3e T07 34

0225.0 points

Which of the following would probably have a positive ΔS value?

1. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$ correct
2. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
3. $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{aq})$
4. $\mathrm{He}(\mathrm{g}, 2 \mathrm{~atm}) \rightarrow \mathrm{He}(\mathrm{g}, 10 \mathrm{~atm})$
5. $2 \mathrm{Ag}(\mathrm{s})+\mathrm{Br}_{2}(\ell) \rightarrow 2 \mathrm{AgBr}(\mathrm{s})$

Explanation:

We can predict the sign of ΔS by noting the relative order of entropy: solids (lowest)
$<$ liquids $<$ solutions $<$ gases (highest) and the number of moles of each type. Also, if a gas is compressed (pressure increased) its entropy decreases.

For the reactions given we have
$\mathrm{He}(\mathrm{g}, 2 \mathrm{~atm}) \rightarrow \mathrm{He}(\mathrm{g}, 10 \mathrm{~atm})$
gas pressure increased $\Delta S<0$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
1 mol gas +1 mol solid $\rightarrow 2 \mathrm{~mol}$ gas; $\Delta S>0$ $2 \mathrm{Ag}(\mathrm{s})+\mathrm{Br}_{2}(\ell) \rightarrow 2 \mathrm{AgBr}(\mathrm{s})$

2 mol solid +1 mol liquid $\rightarrow 2 \mathrm{~mol}$ solid;
$\Delta S<0$
$\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{aq})$
1 mol gas $\rightarrow 1$ mol solution; $\Delta S<0$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
2 mol gas $\rightarrow 1 \mathrm{~mol}$ gas; $\Delta S<0$
Msci 151208
$023 \quad 5.0$ points
Which of the following inequalities concerning the absolute entropy per mole at $25^{\circ} \mathrm{C}$ is INCORRECT?

1. $S(\mathrm{Na}(\mathrm{g}))>S(\mathrm{Na}(\mathrm{s}))$
2. $S\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)>S\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right)$
3. $S\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)>S\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)$
4. $S\left(\mathrm{CHCl}_{3}(\mathrm{~g})\right)>S\left(\mathrm{CHCl}_{3}(\ell)\right)$
5. $S(\mathrm{NaCl}(\mathrm{s}))>S(\mathrm{NaCl}(\mathrm{aq}))$ correct

Explanation:

Of the states of matter, solids are the most ordered and gases are the least ordered. The entropy of any substance increases as the substance goes from solid to liquid to gas. Solutions are also inherently more disordered than pure substances. Thus the correct choice is $S(\mathrm{NaCl}(\mathrm{s}))>S(\mathrm{NaCl}(\mathrm{aq}))$, because by dissolving the NaCl , it becomes more disordered; i.e., higher in entropy.

ChemPrin3e T07 11

0245.0 points

Calculate the standard entropy of condensation of chloroform at its boiling point (335
K). The standard molar enthalpy of vaporization of chloroform at its boiling point is 31.4 $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$.

1. $+506 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
2. $+31.4 \mathrm{~kJ} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
3. $-31.3 \mathrm{~kJ} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
4. $-93.7 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ correct
5. $+93.7 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$

Explanation:

$$
\begin{gathered}
\Delta H_{\mathrm{vap}}=-31.4 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \quad T_{\mathrm{BP}}=335 \mathrm{~K} \\
=-31400 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \\
\begin{aligned}
\Delta S_{\mathrm{cond}} & =\frac{q}{T}=\frac{\Delta H_{\mathrm{con}}}{T_{\mathrm{BP}}}=\frac{-\Delta H_{\mathrm{vap}}}{T_{\mathrm{BP}}} \\
& =\frac{-31400 \mathrm{~J} \cdot \mathrm{~mol}^{-1}}{335 \mathrm{~K}} \\
& =-93.7313 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}
\end{aligned}
\end{gathered}
$$

Mlib 053049
$025 \quad 5.0$ points
For which of the following processes does the entropy of the universe decrease?

1. None of these is correct. correct
2. freezing one mole of water to ice at $0^{\circ} \mathrm{C}$
3. melting one mole of ice to water at $0^{\circ} \mathrm{C}$
4. freezing one mole of water to ice at $0^{\circ} \mathrm{C}$ and then cooling it to $-10^{\circ} \mathrm{C}$
5. freezing one mole of water to ice at $-10^{\circ} \mathrm{C}$

Explanation:

For spontaneous changes, the entropy of the universe increases.

Msci 151302
$026 \quad 5.0$ points
Generally speaking, entropy will increase when

1. temperature is decreased.
2. heat is added to a system. correct
3. the volume occupied by a group of molecules decreases.
4. there is a phase change from liquid to solid.
5. mixtures are separated into pure components.

Explanation:

Entropy will INCREASE when volumes increase, temperatures increase, and anytime a mixture becomes more disordered. A liquid to solid phase change is a decrease in entropy. Thus the correct choice is that heat is added to the system - which typically results in a temperature increase.

ChemPrin3e 0720
 027 5.0 points

Based on the structures of each of the following molecules,
A) NO
B) Cl_{2}
C) CO_{2}
D) $\mathrm{N}_{2} \mathrm{O}$
which would be most likely to have a residual entropy in their crystal forms at $T=0$?

1. A and C only
2. C and D only
3. All have residual entropy.
4. A and D only correct
5. A and B only
6. B and C only
7. None of these responses is correct.
8. B and D only

Explanation:

We would expect NO and $\mathrm{N}_{2} \mathrm{O}$ to be the
most likely to have a residual entropy at 0 K ，since the structures are set up so that the O and N atoms（which are of similar size） could be oriented in one of two ways without perturbing the lattice of the solid，as shown．
N 二 $\mathrm{O} \quad \mathrm{N}=\mathrm{O} \quad \mathrm{N}$ 二 O
N 三 $\mathrm{O} \quad \mathrm{N}$ 三 $\mathrm{O} \quad \mathrm{N}$ 三 O
N 二 $\mathrm{O} \quad \mathrm{O}$ 二 $\mathrm{N} \quad \mathrm{N}$ 二 O
N 二 $\mathrm{O} \quad \mathrm{N}$ 二 $\mathrm{O} \quad \mathrm{N}$ 二 O

$$
\begin{array}{lll}
\mathrm{N} \equiv \mathrm{~N}-\mathrm{O} & \mathrm{~N} \equiv \mathrm{~N}-\mathrm{O} & \mathrm{~N} \equiv \mathrm{~N}-\mathrm{O} \\
\mathrm{~N} \equiv \mathrm{~N}-\mathrm{O} & \mathrm{~N} \equiv \mathrm{~N}-\mathrm{O} & \mathrm{O}-\mathrm{N} \equiv \mathrm{~N} \\
\mathrm{~N} \equiv \mathrm{~N}-\mathrm{O} & \mathrm{~N} \equiv \mathrm{~N}-\mathrm{O} & \mathrm{~N} \equiv \mathrm{~N}-\mathrm{O}
\end{array}
$$

Because CO_{2} and Cl_{2} are symmetrical， switching ends of the molecule does not re－ sult in increased disorder．

LDE Stat Thermo Theory 004

0285.0 points

Assuming you had 1 mole of each of the species below，for which species would the actual residual entropy be closest to the pre－ dicted residual entropy？（Hint：think in terms of $\mathrm{S}=\mathrm{k} \cdot \ln \mathrm{W}$ and ideality）

1． FBr

2．BrI correct

3． FCl
4．ClI

Explanation：

All of the species have dipole－dipole inter－ actions that make completely random orien－ tations less likely as they form a crystal near absolute zero．The species with the weakest dipole moment will most closely approximate completely random orientations and will have an actual residual entropy closer to to the predicted residual entropy．The $\triangle \mathrm{EN}$ of the species $\mathrm{BrI}, \mathrm{FCl}, \mathrm{FBr}$ and ClI are 0．3，0．82， 1.02 and 0.5 respectively．The relative value of $\Delta \mathrm{EN}$ can be inferred based on knowledge of the electronegativity trend．

Positional Entropy 01
 0295.0 points

Which of the following has the largest posi－
tional entropy at 0 K ？

1．two NH_{3} molecules
2．four CO molecules

3．sixteen O_{2} molecules
4．three $\mathrm{BCl}_{2} \mathrm{~F}$ molecules correct
5．eight CCl_{4} molecules
Explanation：

Entropy SiC59
 $030 \quad 5.0$ points

Imagine that one carbon in buckminster－ fullerene $\left(\mathrm{C}_{60}\right)$ is replaced by a silicon atom， yielding SiC_{59} ．This molecule can then orient in 60 different ways．What is the entropy of one mole of SiC_{59} at $T=0 \mathrm{~K}$ ？

1． $27.3 \mathrm{~kJ} / \mathrm{K}$
2． $34.0 \mathrm{~J} / \mathrm{K}$ correct
3． $5.65 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
4． $4.53 \times 10^{-20} \mathrm{~J} / \mathrm{K}$
Explanation：
$n=1 \mathrm{~mol} \quad k=1.38066 \times 10^{-23} \mathrm{~J} / \mathrm{k}$
$W=60 \quad N_{A}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
S= & n k N_{\mathrm{A}} \ln W \\
= & (1 \mathrm{~mol})\left(1.38066 \times 10^{-23} \mathrm{~J} / \mathrm{k}\right) \\
& \times\left(6.02214 \times 10^{23} \mathrm{~mol}^{-1}\right) \ln (60) \\
= & 34.0425 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

ChemPrin3e T07 01

0315.0 points

Calculate the change in entropy of a large pail of water after 200 J of energy is reversibly transferred to the water at $20^{\circ} \mathrm{C}$ ．

$$
\text { 1. }-0.683 \mathrm{~J} \cdot \mathrm{~K}^{-1}
$$

2．$-0.733 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
3. $+0.733 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
4. $+0.683 \mathrm{~J} \cdot \mathrm{~K}^{-1}$ correct
5. $-200 \mathrm{~J} \cdot \mathrm{~K}^{-1}$

Explanation:

$T=20^{\circ} \mathrm{C}+273.15=293.15 \mathrm{~K}$
$\Delta S=\frac{q}{T}=\frac{200 \mathrm{~J}}{293.15 \mathrm{~K}}=+0.6822 \frac{\mathrm{~J}}{\mathrm{~K}}$.
ChemPrin3e T07 39
0325.0 points

Calculate $\Delta S_{\text {surr }}^{\circ}$ at 298 K for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g})
$$

$\Delta H_{\mathrm{r}}^{\circ}=-546 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $\Delta S_{\mathrm{r}}^{\circ}=+14.1 \mathrm{~J}$ $\cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$.

1. $-1830 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
2. $+1820 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
3. $+14.1 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
4. $+1832 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ correct
5. $-14.1 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$

Explanation:

$\Delta H_{\mathrm{r}}^{\circ}=546000 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \quad T=298 \mathrm{~K}$

$$
\begin{aligned}
\Delta S_{\text {surr }}^{\circ} & =\frac{q_{\text {surr }}}{T}=\frac{-q}{T}=\frac{-\Delta H_{\mathrm{r}}^{\circ}}{298 \mathrm{~K}} \\
& =\frac{-\left(-546000 \mathrm{~J} \cdot \mathrm{~mol}^{-1}\right)}{298 \mathrm{~K}} \\
& =+1832.21 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

BP Benzene
 $033 \quad 5.0$ points

What is the boiling point of benzene if it has a standard heat of vaporization of $30.8 \mathrm{~kJ} / \mathrm{mol}$ and a standard entropy of vaporization of 87.2 $\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$?

1. $100^{\circ} \mathrm{C}$
2. $-272.6^{\circ} \mathrm{C}$
3. $353^{\circ} \mathrm{C}$
4. $80^{\circ} \mathrm{C}$ correct
5. 0.35 K

Explanation:

$\Delta H_{\text {vap }}=30.8 \mathrm{~kJ} / \mathrm{mol}=30800 \mathrm{~J} / \mathrm{mol}$ $\Delta S_{\text {vap }}=87.2 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

$$
\begin{aligned}
T_{\mathrm{BP}} & =\frac{\Delta H_{\mathrm{vap}}}{\Delta S_{\mathrm{vap}}} \\
& =\frac{30800 \mathrm{~J} / \mathrm{mol}}{87.2 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}} \\
& =353.211 \mathrm{~K} \\
& =80.211^{\circ} \mathrm{C}
\end{aligned}
$$

LDE Thermo 2nd Law Calc 007 $034 \quad 5.0$ points

Your friend left two moles of rocky road ice cream out in the sun and all of it melted. Assuming that $\Delta \mathrm{H}=4.74 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}=18.4 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$ for ice cream melting and that the temperature outside was $35^{\circ} \mathrm{C}$, by how much in total has your friend increased the entropy of the universe?

1. $18.4 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
2. $36.8 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
3. $6.02 \mathrm{~J} \cdot \mathrm{~K}^{-1}$ correct
4. $3.01 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
5. $0 \mathrm{~J} \cdot \mathrm{~K}^{-1}$

Explanation:

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {surr }}=-\frac{\Delta \mathrm{H}}{\mathrm{~T}}=-\frac{4740 \mathrm{~J} \cdot \mathrm{~mol}^{-1}}{308 \mathrm{~K}} \\
& \quad=-15.39 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\mathrm{sys}}+\Delta \mathrm{S}_{\text {surr }}
$$

$$
=3.01 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}
$$

the total increase is $(2 \cdot 3.01) \mathrm{J} \cdot \mathrm{K}^{-1}$

$$
=6.02 \mathrm{~J} \cdot \mathrm{~K}^{-1}
$$

Msci 151414

$035 \quad 5.0$ points
Which of the following statements is always true?

1. A reaction for which delta S^{0} is positive is spontaneous.
2. If ΔH^{0} and ΔS^{0} are both positive, ΔG^{0} will decrease as the temperature increases. correct
3. An exothermic reaction is spontaneous.
4. If the number of moles of gas does not change in a chemical reaction, then $\Delta S^{0}=0$.

Explanation:

$$
\begin{gathered}
\Delta H=(+) \\
\Delta S=(+) \\
\Delta G=\Delta H-T \Delta S \\
=(+)-T(+) \\
=(+)-T
\end{gathered}
$$

As T increases, ΔG decreases.

$$
\begin{array}{ll}
\text { Msci } & \mathbf{1 5} \\
\mathbf{1 4 0 6 a} \\
\mathbf{0 3 6} \quad 5.0 \text { points }
\end{array}
$$

Consider the equation

$$
\mathrm{NH}_{4} \mathrm{Br}(\mathrm{~s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HBr}(\mathrm{~g})
$$

carefully, and think about the sign of ΔS for the reaction it describes. $\Delta H=+188.3 \mathrm{~kJ}$. Which response describes the thermodynamic spontaneity of the reaction?

1. The reaction is not spontaneous at any temperatures.
2. All responses are correct.
3. The reaction is spontaneous at all temperatures.
4. The reaction is spontaneous only at relatively high temperatures. correct
5. The reaction is spontaneous only at relatively low temperatures.

Explanation:

Entropy (S) is high for systems with high degrees of freedom, disorder or randomness and low for systems with low degrees of freedom, disorder or randomness.

$$
\mathrm{S}(\mathrm{~g})>S(\ell)>S(\mathrm{~s})
$$

A reaction is spontaneous only when ΔG is negative. ΔH is positive for this reaction and ΔS is positive.

$$
\begin{aligned}
\Delta G & =\Delta H-T \Delta S \\
& =(+)-T(+) \\
& =(+)-T
\end{aligned}
$$

ΔG will be negative (spontaneous reactions) only at high values of T.

ChemPrin3e T07 61
 $037 \quad 5.0$ points

For the reaction

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$\Delta H_{\mathrm{r}}^{\circ}=+198 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $\Delta S_{\mathrm{r}}^{\circ}=$ $190 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ at 298 K . The forward reaction will be spontaneous at

1. temperatures above 1315 K .
2. no temperature.
3. all temperatures.
4. temperatures above 1042 K . correct
5. temperatures below 1042 K.

Explanation:

$$
\Delta H_{\mathrm{r}}^{\circ}=+198 \mathrm{~kJ} / \mathrm{mol} \quad \Delta S_{\mathrm{r}}^{\circ}=0.019 \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\Delta G^{0}=\Delta H^{0}-T \Delta S
$$

$\Delta G^{0}<0$ for a spontaneous reaction, so

$$
\begin{aligned}
0 & >\Delta H^{0}-T \Delta S \\
T & >\frac{\Delta H^{0}}{\Delta S^{0}} \\
& =\frac{198 \mathrm{~kJ} / \mathrm{mol}}{0.019 \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}}=1042.11 \mathrm{~K}
\end{aligned}
$$

Thus the temperature would need to be $>$ 1042.11 K.

ChemPrin3e 0753
 0385.0 points

Which of the compounds
I) $\mathrm{SO}_{2}(\mathrm{~g})$;
II) $\mathrm{NO}(\mathrm{g})$;
III) $\mathrm{HCN}(\mathrm{g})$;
IV) $\mathrm{PCl}_{5}(\mathrm{~g})$;
is/are unstable and will decompose into their elements under standard conditions at $25^{\circ} \mathrm{C}$?

	$\Delta H_{\mathrm{f}}^{\circ}$	S°	$\Delta G_{\mathrm{f}}^{\circ}$
	$\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$	$\left(\frac{\mathrm{J}}{\mathrm{K} \cdot \mathrm{mol}}\right)$	$\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$
$\mathrm{SO}_{2}(\mathrm{~g})$	-296.83	248.22	-300.19
$\mathrm{NO}(\mathrm{g})$	90.25	210.76	86.55
$\mathrm{HCN}(\mathrm{g})$	135.1	201.78	124.7
$\mathrm{PCl}_{5}(\mathrm{~g})$	-374.9	364.6	-305.0

1. II, III, and IV only
2. II and IV only
3. III only
4. I, II and IV only
5. Another combination
6. I and III only
7. I, II and III only
8. Cannot be determined
9. I only
10. II and III only correct

Explanation:

Examine the standard free energies of formation of the compounds.

Compounds with a negative free energy of formation are stable, whereas those with a positive free energy are unstable with respect to the elements that compose them. Accordingly, only SO_{2} and $\mathrm{PCl}_{5}(\mathrm{~g})$ are thermodynamically stable while $\mathrm{HCN}(\mathrm{g})$ and $\mathrm{NO}(\mathrm{g})$ are unstable.

Msci 151422
$039 \quad 5.0$ points
From the following data (at 298 K),

Substance	$\Delta H_{\mathrm{f}}^{0}$ $\mathrm{kcal} / \mathrm{mol}$	S^{0} $\mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$
NO	22.0	50.0
$\mathrm{H}_{2} \mathrm{O}$	-68.0	17.0
NH_{3}	-11.0	46.0
O_{2}	0.0	49.0

find ΔG^{0} for the reaction

$$
4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} .
$$

The answer is closest to

1. $+100 \mathrm{kcal} / \mathrm{mol}$.
2. $+300 \mathrm{kcal} / \mathrm{mol}$.
3. $+200 \mathrm{kcal} / \mathrm{mol}$.
4. $+250 \mathrm{kcal} / \mathrm{mol}$. correct
5. $+150 \mathrm{kcal} / \mathrm{mol}$.

Explanation:

$$
\begin{aligned}
\Delta H_{\mathrm{rxn}}^{0}= & \sum n \Delta H_{\mathrm{f}, \mathrm{prod}}-\sum n \Delta H_{\mathrm{f}, \mathrm{rct}} \\
= & {[4(-11.0 \mathrm{kcal} / \mathrm{mol})] } \\
& -[4(22.0 \mathrm{kcal} / \mathrm{mol}) \\
& \quad+6(-68.0 \mathrm{kcal} / \mathrm{mol})] \\
= & 276 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
\Delta S_{\mathrm{rxn}}^{0} & =\sum n S_{\mathrm{prod}}-\sum n S_{\mathrm{rct}} \\
& =[5(49 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K})
\end{aligned}
$$

$$
\begin{aligned}
&\quad+4(46 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K})] \\
&-[4(50 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K}) \\
&+6(17 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K})] \\
&= 127 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K} \\
&= 0.127 \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\Delta G^{0}= & \Delta H^{0}-T \Delta S^{0} \\
= & 276 \mathrm{kcal} / \mathrm{mol} \\
& -(298 \mathrm{~K})(0.127 \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{~K}) \\
= & 238.154 \mathrm{kcal} / \mathrm{mol} \\
\approx & 250 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

Msci 15 1422M

$040 \quad 5.0$ points
Calculate the standard Gibbs free energy at 298 K for the reaction
$4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell)$

Species	$\Delta H_{\mathrm{f}}^{0}$ $\mathrm{~kJ} / \mathrm{mol}$	S^{0} $\mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.11	192.3
$\mathrm{O}_{2}(\mathrm{~g})$	0.0	205.0
$\mathrm{NO}_{2}(\mathrm{~g})$	+33.2	240.0
$\mathrm{H}_{2} \mathrm{O}(\ell)$	-285.8	69.91

9. $-1398 \mathrm{~kJ} / \mathrm{mol}$ rxn
10. $-1152 \mathrm{~kJ} / \mathrm{mol}$ rxn correct

Explanation:

$$
\begin{aligned}
& \Delta H_{\mathrm{rxn}}^{0}= \sum n \Delta H_{\mathrm{fprod}}^{0}-\sum n \Delta H_{\mathrm{frct}}^{0} \\
&= {[6(-285.8 \mathrm{~kJ} / \mathrm{mol})} \\
&+4(33.2 \mathrm{~kJ} / \mathrm{mol})] \\
&-4(-46.11 \mathrm{~kJ} / \mathrm{mol}) \\
&=-1397.56 \mathrm{~kJ} / \mathrm{mol} \\
& \begin{aligned}
& \Delta S_{\mathrm{rxn}}^{0}= \sum n \Delta S_{\mathrm{f} \mathrm{prod}}^{0}-\sum n \Delta S_{\mathrm{frct}}^{0} \\
&= {[6(69.91 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})} \\
&+4(240.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})] \\
&-[7(205.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) \\
&\quad+4(192.3 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})] \\
&=-824.74 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
&=-0.82474 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K} \\
&= \\
& \Delta G^{0}= H^{0}-T \Delta S^{0} \\
&=- 1397.56 \mathrm{~kJ} / \mathrm{mol} \\
&-(298 \mathrm{~K})(-0.82474 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K}) \\
&=- 1151.79 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
\end{aligned}
$$

1. $+1398 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
2. $-825 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
3. $+1152 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
4. $+244,363 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
5. $+825 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
6. $-1643 \mathrm{~kJ} / \mathrm{mol}$ rxn
7. $+1643 \mathrm{~kJ} / \mathrm{mol}$ rxn
8. $-180,455 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
