This print-out should have 6 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

LDE Bond Order 005
 00110.0 points

All of the species below have the same bond order except for one. Which is it?

1. F_{2}^{+}
2. Li_{2}^{-}correct
3. N_{2}^{3+}
4. C_{2}^{+}
5. B_{2}^{-}

Explanation:

All of the species have a bond order of 1.5 except for Li_{2}^{-}, whose bond order is 0.5 .

LDE Paramagnetism 004
 00210.0 points

Which of the following species is/are paramagnetic?
I) Li_{2}^{-}
II) O_{2}
III) H_{2}^{+}

1. I and II
2. I only
3. I and III
4. II and III
5. II only
6. I, II and III correct
7. III only

Explanation:

Li_{2}^{-}and H_{2}^{+}both have an odd number of electrons and therefore must be paramagnetic. O_{2} has 16 total electrons, the last two
of which must go into separate degenerate π^{*} anti-bonding orbitals.

LDE Bond Order 006
 00310.0 points

Rank the following species from strongest to weakest bonds based on bond order: $\mathrm{O}_{2}, \mathrm{~N}_{2}^{+}$, $\mathrm{H}_{2}^{-}, \mathrm{Li}_{2}, \mathrm{C}_{2}^{2-}$.

1. $\mathrm{N}_{2}^{+}>\mathrm{O}_{2}>\mathrm{C}_{2}^{2-}>\mathrm{Li}_{2}>\mathrm{H}_{2}^{-}$
2. $\mathrm{C}_{2}^{2-}>\mathrm{N}_{2}^{+}>\mathrm{O}_{2}>\mathrm{H}_{2}^{-}>\mathrm{Li}_{2}$
3. $\mathrm{N}_{2}^{+}>\mathrm{O}_{2}>\mathrm{C}_{2}^{2-}>\mathrm{H}_{2}^{-}>\mathrm{Li}_{2}$
4. $\mathrm{N}_{2}^{+}>\mathrm{C}_{2}^{2-}>\mathrm{O}_{2}>\mathrm{Li}_{2}>\mathrm{H}_{2}^{-}$
5. $\mathrm{C}_{2}^{2-}>\mathrm{N}_{2}^{+}>\mathrm{O}_{2}>\mathrm{Li}_{2}>\mathrm{H}_{2}^{-}$correct

Explanation:

The species $\mathrm{O}_{2}, \mathrm{~N}_{2}^{+}, \mathrm{H}_{2}^{-}, \mathrm{Li}_{2}$ and C_{2}^{2-} have bond orders of $2,2.5,0.5,1$ and 3 respectively.

LDE Ideal Gas Reaction 003
 00410.0 points

Consider the reaction below. If one mole of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ decomposes completely and the resulting gas is collected in a 0.2 L vessel, what will the pressure be inside that vessel at standard temperature?

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

1. 22.4 atm
2. $11,348 \mathrm{~atm}$
3. $2,270 \mathrm{~atm}$

4. 112 atm correct

Explanation:

One mole of carbonic acid would decompose to produce one mole of carbon dioxide.

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{n R T}{V}=\frac{1 * 0.0821 * 273}{0.2}=112 \mathrm{~atm}
\end{aligned}
$$

LDE Ideal Gas Calculation 005

00510.0 points

A sample of gas has a volume of 4.40 L at STP. What will the volume be if the temperature is raised to 546 K and the pressure is lowered to 0.5 atm ?

1. 8.80 L
2. 17.60 L

3. 4.40 L correct

4. 1.10 L
5. 2.20 L

Explanation:

The increase in temperature will double the volume, but the decreased in pressure will halve the volume. There will no net change in volume.

LDE Kinetic Theory 004

00610.0 points

If every assumption of kinetic molecular theory were true, which of the statements below would be a consequence?

1. Diffusion would happen as rapidly as a gas' velocity.
2. None of these would be a consequence.
3. Diatomic gases would not exist.
4. Liquids and solids would not exist. correct

Explanation:

If gases were infinitely small and did not attract or repel each other, they would never condense into liquids or solids. The fact that gases have non-zero volumes and attractive forces results in condensation and freezing in a temperature-dependent manner.

