Lecture 10. Turning 2D structures into 3D VSEPR models to Investigate Polarity

The Really Big Picture

In our first lectures on bonding, we dealt in two-dimensions with our chemical structures as well developed ionic and covalent 2D structures based upon simple concepts like $\Delta \mathrm{EN}$ and the stability of Lewis structures in octet electronic configurations.

Now we become more sophisticated as we develop three-dimensional structures of covalently bonded compounds. We will use electron pair repulsion theory (VSEPR) and devise more satisfactory bonding orbitals based on valence bond (VB) theory. Then we learn about a sophisticated mathematical model for bonding called molecular orbital (MO) theory.

Example 1: NH_{3} with an octet rule Lewis structure
becomes

In VSEPR theory, the first thing you look for is the number of regions of electron density. Regions of e- density are made by either nonbonding e- pair or bonding e-pair around an atom. Note that NH_{3} has four regions, three are bonding and one is nonbonding.

What do the regions of e- density tell you?

Answer: three important structural features.

- Electronic Geometry- NH_{3} with 4 electron rich regions is tetrahedral
- Bond Angle- NH_{3} with 4 electron rich regions is 109.5°
- Hybridization- NH_{3} with 4 electron rich regions is sp^{3}

Two electron rich regions: Example CO_{2} $\mathrm{O}=\mathrm{C}=\mathrm{O}$ is linear, 180°, sp

Three electron rich regions Example NO_{3}^{-}
Trigonal Planar, $120^{\circ}, \mathrm{sp}^{2}$

Five electron rich regions: Example I_{3}^{-}

$$
\begin{aligned}
& 90^{\circ} \\
& \text { is Trigonal Pyramidal }> 120^{\circ}>\mathrm{dsp}^{3} \\
& 180^{\circ}
\end{aligned}
$$

Six electron rich regions: Example SF_{6}

Identifying polar and non-polar compounds using vector algebra.

And now a time-out for a bit of vector math so we can learn about another layer of chemical information, whether a compound is polar or nonpolar.

This bit of high school math will be used to add $\triangle \mathrm{EN}$ vectors together. Why?

So by Definition:

$$
\begin{array}{lc}
\Sigma \Delta \mathrm{EN}=0 & \text { non-polar molecule } \\
\Sigma \Delta \mathrm{EN} \neq 0 & \text { polar molecule }
\end{array}
$$

For example: CO_{2}
$\xrightarrow[\mathrm{O}=\mathrm{C}=\mathrm{O}]{1.0}{ }^{1.0}$
For example: NH_{3}

Summing two $\Delta \mathrm{EN}$ vectors $=3.5-2.5=1.0$
So add together $\Sigma \Delta \mathrm{EN}=-1.0+1.0=0$
So CO_{2} is non-polar

And now a famous example of why VSEPR explains that $\mathrm{H}_{2} \mathrm{O}$ is polar
Lewis structure of $\mathrm{H}_{2} \mathrm{O}$ in 2 dimensions.
$\mathrm{H}: \dot{\mathrm{O}}: \mathrm{H}$
So $\Sigma \Delta E N=0$ which would suggest that $\mathrm{H}_{2} \mathrm{O}$ is non-polar.

But VSEPR creates an $\mathrm{H}_{2} \mathrm{O}$ structure in 3 dimensions

Now $\Sigma \Delta \mathrm{EN} \rightarrow$

We will see that this result has profound consequences on the chemistry of water solutions.
So let's do some more examples using the simple summation of $\Delta \mathbf{E N}$ vectors.
Polar: $\Sigma \Delta \mathrm{EN}=0$ or not symmetrical Non-polar: $\Sigma \Delta \mathrm{EN} \neq 0$ or symmetrical
Assign these molecules as polar or non-polar based strictly on symmetry. Answer. They are all symmetrical and therefore nonpolar.

Examples:
$\mathrm{N} \equiv \mathrm{N}$

Polar, not symmetrical
$\mathrm{BH}_{2} \mathrm{Cl}$
Non-polar symmetry
$\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{BH}_{3}, \mathrm{ICl}_{2}^{-}$

