LECTURE 11. AN INTRODUCTION TO VB AND VSEPR THEORY

Now that we can draw 2-dimensional structures using Lewis dot structures, how do we make them into 3-dimensions? Answer:

VSEPR (Valence Shell Electron Pair Repulsion) Theory

VSEPR says, around any central atom, electron rich regions tend to move as far from each other as possible.

What are electron rich regions?

There are 5 examples of VSEPR to consider:

SEri → linear f cumbul ntm ← con draw, In 2.1 ○ 2 e- rich regions \rightarrow linear

 \circ 3 e- rich regions → trigonal planar

○ 4 e- rich regions \rightarrow tetrahedral

○ 5 e- rich regions \rightarrow trigonal bipyramidal

○ 6 e- rich regions \rightarrow octahedral

An exception to simple bond angles.

B and U e- pairs are not the same. If an e- pair is constrained by two nuclei, it takes less space than if constrained by one nucleus.

Bonding e- pair Unbonded e- pair takes up more spac So in H2O, the •• takes up more space than the H:

Smaller than 109.5

This compresses the O-H bonds to form a smaller H-O-H bond angle, about 105 degrees instead of 109.5 degrees. BUT, averaging of bond angles is still 109.5 degrees.

Now on to More Advanced VSEPR ideas as we ooze into Valence Bond (VB) Theory:

- Molecular geometries
- Multiple central atom
- Hybrid orbits (VB theory)
- Atomic orbits forming molecular orbits

(pretty hard) (pretty easy) (kind of hard) (really hard)

Molecular Geometries

Looks at what happens when you distinguish $\underline{\mathbf{B}}$ onding from $\underline{\mathbf{U}}$ nbonded e- pairs.

Consider three tetrahedral compounds (4 e- rich regions)

	H20	NH3	CH4
In 2-D	<i>н</i> -ё-н	H - Ň-H H	н-с-н н
In 3-D	H H	H H H	H
Electron rich regions	4	4	4
Electronic shape		····	Ċ,
All are the same	Tetrahedral	Tetrahedral	Tetrahedral
Bond angle	109.5	109.5	109.5
Hybridization	sp3	sp3	sp3

So what is different?	? the numb	er of B and U electron	ns.
	<i>н-</i> ё-н	н – Ň-н н	н-с-н Н
# of B and U electrons	AB_2U_2	AB ₃ U	AB_4
So, draw without U, only B	H H	н [•] Н	H H H
Notice the shape of the molecule	\wedge	\Rightarrow	+
Molecular geometry	Angular	Pyramidal	Tetrahedral

You can find all the different molecular shapes at the end of these notes. They have shapes that make sense.

Linear	Trigonal	Angular	Tetrahedral	T-shaped
AB2	ک	, ~~ ,	1	

AB2U3	AB3	AB2U AB2U2	AB4	AB3U2
See-saw AB4U	Trigonal Bipyramidal AB5	Square planar AB4U2	Square pyramidal AB5U	Octahedral AB6

Example: What is electronic and molecular geometry for ICl_2^- ? Note: ICl_2^- is like I_3^- and has 22 available electrons.

Molecular geometry: of the form AB2U3, ignore U3 \rightarrow linear

Oh, and a hint to learn 5 types of molecular geometries when there are no unbonded pairs: ABn = electronic geometry = molecular geometry

Multiple Central Atoms—this is a lot simpler than you might think

- just treat as individual central atoms looking only at neighboring e- rich regions.
 - o Example: has 2 central atoms
 - Central atom 1 and 2 both have 4 e- rich regions, so they are both tetrahedral.

п

The 3 famous multiple central atoms you must know COLD for this exam:

Ethane, C_2H_6	Ethylene, C_2H_4	Ethyne, C_2H_2
H-C-C+H H-C-C+H	H_C=C_H H_C=C_H	H-CEC-H
Tetrahedral	Trigonal planar	Linear
109.5	120	180
sp3	sp2	sp
All 7 sigma bonds	1 pi bond	2 pi bonds
	5 sigma bonds	3 sigma bonds