
LECTURE 18. SOLIDS

- As you remove energy from a system, IMF attractions increase, and gases turn into liquids, which then lose more energy to become ordered solids.
- Not all solids are ordered (i.e. plastic), but under specific circumstances, crystalline solids form that have specific geometrics
- There are 7 primitive cells (one is a simple cubic comprised entirely of right angles and equal side lengths; the other six vary in angle measure and length)
- Unit cells can be merged by overlapping them to form more complex structures crystals

Bonding in Solids

4 types of bonds, depending on location of molecules in periodic table:

TABLE 5.4	Fypical C	haracteristics	of	Solids
------------------	------------------	----------------	----	--------

Class	Examples	Characteristics
metallic	s- and d-block elements	malleable, ductile, lustrous, electrically and thermally conducting
ionic	NaCl, KNO ₃ , CuSO ₄ ·5H ₂ O	hard, rigid, brittle; high melting and boiling points; those soluble in water give conducting solutions
network	B, C, black P, BN, SiO ₂	hard, rigid, brittle; very high melting points; insoluble in water
molecular	BeCl ₂ , S ₈ , P ₄ , I ₂ , ice, glucose, naphthalene	relatively low melting and boiling points; brittle if pure

- 1) **Metallic Bond** -> Metal bonds with Metal; very strong (ex. Cr-V-Cr-V or Al-Al-Al)
- 2) Ionic Bond -> Metal bonds with a Nonmetal; $\approx 200 \text{ kJ/mol}$ (ex. Na-Cl-Na-Cl)
- 3) Covalent Bond -> Nonmetal bonds with a Nonmetal; ≈ 400 kJ/mol (ex. graphite C-C-C-C or glass Si-O-Si-O)
- **4) IMF between molecules** -> Solids form from H-bonds, dipoles, dispersion (ex. H-O-H -----O-H); These are the weakest solids (1-20 kJ/mol)