This print-out should have 40 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Calculate the number of H_2O molecules in 1.00 cm³ of water at 0°C (density = 0.99987 g/cm³).

- 1. 8.36×10^{24} molec
- **2.** 1.55×10^{23} molec
- **3.** 6.69×10^{22} molec
- 4. 3.35×10^{22} molec

002 10.0 points

How many moles of hydrogen are contained in 3.00 moles of ethanol (CH₃CH₂OH)?

1. $3.00 \times 6.02 \times 10^{23} \text{ mol}$
2. $3.00 \times 3.61 \times 10^{24}$ mol
3. 3.61×10^{24} mol
4. 6.02×10^{23} mol
5. 18.00 mol
6. 3.00×10^{23} mol
7. 3.00 mol
8. $1.00 \times 10^{23} \text{ mol}$
9. 1.00 mol

10. 6.00 mol

 $\begin{array}{cc} 003 \quad 10.0 \ points \\ {\rm Find \ the \ molar \ mass \ for \ (NH_4)_2 CrO_4.} \end{array}$

1. 168.10 g/mol

2. 110.13 g/mol

3. 136.10 g/mol

4.142.20 g/mol

5. 152.10 g/mol

004 10.0 points

What is the weight of a single molecule of CO_2 ?

1. 6.0×10^{-23} g **2.** 44 g **3.** 7.31×10^{-23} g

4. 6.0×10^{23} g

5. 7.31×10^{23} g

005 10.0 points

What is the percent carbon by weight in a pure sample of $C_2H_4O_2$?

1. 40%		
2. 30%		
3. 25%		
4. 10%		
5. 20%		

006 10.0 points

A compound consists of 65.45% C, 5.492% H, and 29.06% O on a mass basis and has a molar mass of 110 g/mol. Determine the molecular formula of the compound.

1. CHO

 $\textbf{2.} C_5 H_5 O_2$

 $\textbf{3.} C_3H_3O$

 $4. C_6 H_6 O_2$

A compound is found to contain 53.70% iron and 46.30% sulfur. Find its empirical formula.

- **1.** Fe_2S
- **2.** FeS
- **3.** Fe_2S_3
- 4. Fe_2S_5

008 10.0 points Given the balanced formula

$$2 \operatorname{H}_2 + \operatorname{O}_2 \rightarrow 2 \operatorname{H}_2 \operatorname{O}$$

for the combustion of hydrogen molecules with oxygen molecules, which ratio of hydrogen to oxygen would you expect to produce the loudest bang?

- **1.** $1 \mod H_2 : 1 \mod O_2$
- **2.** 1 mol H_2 : 2 mol O_2
- **3.** $2 \mod H_2 : 2 \mod O_2$
- **4.** $3 \mod H_2 : 1 \mod O_2$
- **5.** $0 \mod H_2 : 3 \mod O_2$
- **6.** $2 \mod H_2 : 1 \mod O_2$

009 10.0 points

Balance the equation

 $?\operatorname{CS}_2+?\operatorname{O}_2 \to ?\operatorname{CO}_2+?\operatorname{SO}_2,$

using the smallest possible integers. The coefficient of O_2 is

- **1.** 1.
- **2.** 5.
- **3.** 2.

4. 4.

5. 3. **6.** O₂; 20.0 g

010 10.0 points

Ethylene (C_2H_4) burns in oxygen to produce carbon dioxide and water. The correct form of the chemical equation that describes this reaction is

- **1.** $C_2H_4 + 2O_2 \rightarrow 2 CO + 2 H_2O$.
- $\mathbf{2.} \operatorname{C_2H_4} + \operatorname{O_2} \rightarrow \operatorname{CO_2} + \operatorname{H_2O}.$
- **3.** $2 \operatorname{C}_2 \operatorname{H}_4 + \operatorname{O}_2 \rightarrow 2 \operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O}$.

4. $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$.

011 10.0 points

For the reaction

$$2 \text{ NH}_3 + \text{CH}_3\text{OH} \rightarrow \text{products}$$

what mass of NH_3 is needed to react with 21 grams of CH_3OH ?

1.3 g
2.22.3 g
3.710 g
4.11 g

012 10.0 points

 $60.0 \ {\rm g} \ {\rm O}_2$ and $50.0 \ {\rm g} \ {\rm S}$ are reacted according to the equation

$$2\mathrm{S} + 3\mathrm{O}_2 \rightarrow 2\mathrm{SO}_3$$
.

Which reactant is in excess and by how many grams?

S; 24.8 g
O₂; 24.8 g
O₂; 24.8 g
O₂; 10.0 g
S; 20.0 g
S; 10.0 g
O₂: 20.0 g

013 10.0 points	4. 1.77 L
Consider the reaction	5. 1.65 L
$2\mathrm{H}_2 + \mathrm{O}_2 \rightarrow 2\mathrm{H}_2\mathrm{O}.$	6 0 564 I
How much water will be formed when 32	0. 0.304 I
grams of hydrogen and 32 grams of oxygen	7 0 0805

1. 36 g

2. 64 g

3. 2.0 g

4. 18 g

014 10.0 points

Consider the reaction

are mixed and allowed to react?

 $N_2 + 3 H_2 \rightarrow 2 NH_3$.

14.0 moles of N_2 and 48.0 moles of H_2 are reacted, producing 21.5 moles of NH₃. What is the percent yield?

1.76.8%

2. 148.8%

3. 130.2%

4. 29.9%

5. 67.2%

6. Not enough information is given.

7. 100.0%

10.0 points 015

How much of a 4.45 M CaBr₂ solution can be prepared if one has 79.6 g of CaBr₂ available?

1. 1.00 L

2. 0.0356 L

3. 0.115 L

1 7.0.0895 L 8.3.54 L

016 10.0 points

What is the molarity of a solution prepared by dissolving 19.8 g of glucose (of MW 180 amu) in 115 mL of solution?

1. 0.00096 M

2. 172.2 M

3. 0.96 M

4. 0.172 M

017 10.0 points

How many mL of 12.0 M HCl are needed to make 2.0 L of 0.40 M HCl solution?

1. 420 mL **2.** 17 mL **3.** 15 mL 4.96 mL

5.67 mL

018 10.0 points

If 200 mL of water is evaporated from 400 mL of 0.5 M aqueous salt solution, what is the resulting concentration?

1. 2.5×10^{-1} M

2. 2.5×10^{0} M

3. None of these

- **4.** 2.5×10^1 M
- **5.** $2.5 \times 10^{-2} \text{ M}$

019 10.0 points

The oxidation numbers of nitrogen in NH_3 , NO_3^- and NO are

- 1. +3, +6, and +2, respectively.
- **2.** -3, +5, and +1, respectively.
- **3.** -3, +5, and +2, respectively.
- 4. -3, +6, and +2, respectively.

020 10.0 points

Calculate the oxidation numbers for each element in RbO.

- **1.** Rb = 0, O = 0
- **2.** Rb = +3, O = -2
- **3.** Rb = +2, O = -2
- **4.** Rb = +1, O = -2
- **5.** Rb = +1, O = -1

021 10.0 points

Which of the displacement reactions below occurs as written (don't worry about balanc-ing)?

- 1. $\mathrm{Fe}^{3+} + \mathrm{Ag} \rightarrow \mathrm{Fe} + \mathrm{Ag}^+$
- **2.** Fe^{3+} + Mg \rightarrow Fe + Mg²⁺
- **3.** $Na^+ + Zn \rightarrow Na + Zn^{2+}$
- 4. $Ca^{2+} + Au \rightarrow Ca + Au^+$
- 5. None of the reactions occurs as written.

022 10.0 points

Identify the solid product that forms when the following aqueous solutions are mixed: C_{1} C_{2} C_{1} C_{2} C_{2} C_{3} C_{4} C_{4}

$$CoCl_2(aq) + Na_2S(aq) \rightarrow$$

1. CoS and NaCl

2. No solid products are formed.

3. CoS and 2NaCl

- 4. NaCl
- **5.** CoS

023 10.0 points

Which of the following is best described as an acid-base reaction?

1. $2 \text{HgO} \rightarrow 2 \text{Hg} + \text{O}_2$

- **2.** Ca + $2 \operatorname{H}_2 O \rightarrow Ca(OH)_2 + H_2$
- **3.** $NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$
- 4. $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
- **5.** $\text{KCl} + \text{NH}_4\text{NO}_3 \rightarrow \text{KNO}_3 + \text{NH}_4\text{Cl}$

024 10.0 points

The observed product from the reaction of $FeCl_2$ and K_2CO_3 is

- **1.** There is no reaction.
- **2.** KCl electrolyte.
- **3.** CO_2 gas.
- **4.** FeCO₃ precipitate.
- **5.** Cl_2 gas.

025 10.0 points

Zn is an active metal above H on the activity series. When zinc is placed in an acidic solution one of the products produced is

1. There is no reaction because Zn is above H.

2. H₂.

3. H₂O.

4. $Zn(OH)_2$.

026 10.0 points

Which of the following aqueous solutions should form a precipitate with aqueous $Fe(NO_3)_3$?

- **1.** K_2SO_4
- **2.** KCl
- **3.** KOH
- **4.** KNO₃

027 10.0 points

Which aqueous solution should form a precipitate with aqueous $Cu(NO_3)_2$?

- **1.** K_2SO_4
- **2.** KNO₃
- **3.** K₂S
- **4.** $CuSO_4$

028 10.0 points

Choose the pair of names and formulas that do not match.

- 1. NaNO₃ : sodium nitrate
- **2.** MgSO₃ : magnesium sulfate
- **3.** $SiCl_4$: silicon tetrachloride
- **4.** N_2O_3 : dinitrogen trioxide
- **5.** $SnCl_4$: stannic chloride

029 10.0 points Name the compound K_2CO_3 .

1. potassium carbide

- **2.** potassium(II) carbonate
- **3.** potassium carboxide
- 4. potassium carbonate

030 10.0 points

Write the correct formula for ammonium phosphate.

- **1.** $(3NH_4)PO_4$
- **2.** $(NH_4)_3PO_4$
- **3.** NH_4PO_4
- **4.** $NH_4(PO_4)_3$

031 10.0 points

What is the name of the compound with the formula CCl_4 ?

- ${\bf 1.} \ {\rm carbon} \ {\rm chloride}$
- **2.** carbon(IV) chloride
- **3.** carbon tetrachloride
- 4. chlorine carbonide

032 10.0 points

The correct name for the compound $AgBrO_3$ is

- 1. silver perbromate.
- 2. gold bromite.
- **3.** silver bromoxide.
- 4. argon oxybromide.
- 5. silver bromate.

033 10.0 points

Choose the formula for the compound nitrous acid.

1. HNO₄

2. HN

- **3.** HNO₃
- **4.** HNO
- **5.** HNO₂
- **6.** H₂NO₃

7. H_2NO_2

8. H₃N

034 10.0 points

How many fluorine atoms are in 4.0 moles of fluorine molecules?

1.	1.5	\times	10^{23}	atoms
2.	4.8	×	10^{24}	atoms
3.	6.6	×	10^{-2}	²⁴ atoms
			94	

4. 2.4×10^{24} atoms

035 10.0 points

Name the compound SO_3 .

1. sulfite

- **2.** sulfate
- 3. sulfur trioxide
- 4. sulfur oxide
- **5.** sulfur(VI) oxide

$\begin{array}{cc} 036 \quad 10.0 \ points \\ {\rm Name \ the \ compound \ Na}_2{\rm O}. \end{array}$

- **1.** sodium(I) oxide
- 2. sodium peroxide
- 3. disodium monoxide

4. sodium oxide

5. sodium(II) oxide

037 10.0 points

The following reactions are observed to take place in aqueous solution, and the reverse reactions do not occur.

 $\begin{array}{rl} \mathrm{Ca} + \ \mathrm{Zn}^{2+} \rightarrow \mathrm{Zn} + \ \mathrm{Ca}^{2+} \\ \mathrm{Al} + \ \mathrm{Zn}^{2+} \rightarrow \mathrm{Al}^{3+} + \ \mathrm{Zn} \\ \mathrm{Ca} + \ \mathrm{Al}^{3+} \rightarrow \mathrm{Al} + \ \mathrm{Ca}^{2+} \\ \mathrm{Zn} + \ \mathrm{Ag}^{+} \rightarrow \mathrm{Zn}^{2+} + \ \mathrm{Ag} \end{array}$

Which of the following lists the metals from most reactive to least reactive?

Zn; Ag; Al; Ca
Ag; Al; Ca; Zn
Ca; Al; Zn; Ag
Al; Zn; Ag; Ca

038 10.0 points

How many moles of the element carbon are in 10 moles of the compound benzene (C_6H_6) ?

1. 60 mol

- **2.** 12 mol
- **3.** 10 mol
- **4.** 1 mol
- **5.** 0 mol

039 10.0 points

The name for $KC_2H_3O_2$ is

- **1.** potassium(I) carbon hydroxide.
- 2. potassium acetate.
- **3.** potassium oxalate.
- **4.** potassium(I) acetate.

040 10.0 points

Of the four compounds HF, HClO₂, NaOH, Ba(OH)₂ which are either strong acids or strong bases in water?

1. All are either strong acids or strong bases.

- 2. NaOH
- **3.** $HClO_2$ and NaOH
- 4. None are strong acids nor strong bases.

5. NaOH and $Ba(OH)_2$