This print-out should have 40 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

Calculate the number of $\mathrm{H}_{2} \mathrm{O}$ molecules in $1.00 \mathrm{~cm}^{3}$ of water at $0^{\circ} \mathrm{C}$ (density $=0.99987$ $\mathrm{g} / \mathrm{cm}^{3}$).

1. $8.36 \times 10^{24} \mathrm{molec}$
2. 1.55×10^{23} molec
3. $6.69 \times 10^{22} \mathrm{molec}$
4. 3.35×10^{22} molec
$002 \quad 10.0$ points
How many moles of hydrogen are contained in 3.00 moles of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$?
5. $3.00 \times 6.02 \times 10^{23} \mathrm{~mol}$
6. $3.00 \times 3.61 \times 10^{24} \mathrm{~mol}$
7. $3.61 \times 10^{24} \mathrm{~mol}$
8. $6.02 \times 10^{23} \mathrm{~mol}$
9. 18.00 mol
10. $3.00 \times 10^{23} \mathrm{~mol}$
11. 3.00 mol
12. $1.00 \times 10^{23} \mathrm{~mol}$
13. 1.00 mol
14. 6.00 mol

$003 \quad 10.0$ points

Find the molar mass for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$.

1. $168.10 \mathrm{~g} / \mathrm{mol}$
2. $110.13 \mathrm{~g} / \mathrm{mol}$
3. $136.10 \mathrm{~g} / \mathrm{mol}$
4. $142.20 \mathrm{~g} / \mathrm{mol}$
5. $152.10 \mathrm{~g} / \mathrm{mol}$

00410.0 points

What is the weight of a single molecule of CO_{2} ?

1. $6.0 \times 10^{-23} \mathrm{~g}$
2. 44 g
3. $7.31 \times 10^{-23} \mathrm{~g}$
4. $6.0 \times 10^{23} \mathrm{~g}$
5. $7.31 \times 10^{23} \mathrm{~g}$

$005 \quad 10.0$ points

What is the percent carbon by weight in a pure sample of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$?

1. 40%
2. 30%
3. 25%
4. 10%
5. 20%

00610.0 points

A compound consists of $65.45 \% \mathrm{C}, 5.492 \% \mathrm{H}$, and $29.06 \% \mathrm{O}$ on a mass basis and has a molar mass of $110 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of the compound.

1. CHO
2. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{2}$
3. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
4. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$

A compound is found to contain 53.70% iron and 46.30% sulfur. Find its empirical formula.

1. $\mathrm{Fe}_{2} \mathrm{~S}$

2. Fe S
3. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
4. $\mathrm{Fe}_{2} \mathrm{~S}_{5}$

$008 \quad 10.0$ points

Given the balanced formula

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

for the combustion of hydrogen molecules with oxygen molecules, which ratio of hydrogen to oxygen would you expect to produce the loudest bang?

1. $1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}: 1 \mathrm{~mol} \mathrm{O}_{2}$
2. $1 \mathrm{~mol} \mathrm{H}_{2}$: $2 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$
3. $2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}: 2 \mathrm{~mol} \mathrm{O}{ }_{2}$
4. $3 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}: 1 \mathrm{~mol} \mathrm{O}_{2}$
5. $0 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}: 3 \mathrm{~mol} \mathrm{O}_{2}$
6. $2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}: 1 \mathrm{~mol} \mathrm{O}_{2}$
$009 \quad 10.0$ points
Balance the equation

$$
? \mathrm{CS}_{2}+? \mathrm{O}_{2} \rightarrow ? \mathrm{CO}_{2}+? \mathrm{SO}_{2}
$$

using the smallest possible integers. The coefficient of O_{2} is

1. 2.
1. 5.
1. 2.
1. 4 .
2. 3.

$010 \quad 10.0$ points
Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ burns in oxygen to produce carbon dioxide and water. The correct form of the chemical equation that describes this reaction is

1. $\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$.
2. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$.
3. $2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$.
4. $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.

$011 \quad 10.0$ points

For the reaction

$$
2 \mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \text { products }
$$

what mass of NH_{3} is needed to react with 21 grams of $\mathrm{CH}_{3} \mathrm{OH}$?

1. 1.3 g
2. 22.3 g
3. 710 g
4. 11 g

$012 \quad 10.0$ points

$60.0 \mathrm{~g} \mathrm{O}_{2}$ and 50.0 g S are reacted according to the equation

$$
2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}
$$

Which reactant is in excess and by how many grams?

1. $\mathrm{S} ; \quad 24.8 \mathrm{~g}$
2. $\mathrm{O}_{2} ; 24.8 \mathrm{~g}$
3. $\mathrm{O}_{2} ; \quad 10.0 \mathrm{~g}$
4. $\mathrm{S} ; \quad 20.0 \mathrm{~g}$
5. $\mathrm{S} ; 10.0 \mathrm{~g}$
6. $\mathrm{O}_{2} ; \quad 20.0 \mathrm{~g}$

$013 \quad 10.0$ points

Consider the reaction

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

How much water will be formed when 32 grams of hydrogen and 32 grams of oxygen are mixed and allowed to react?

1. 36 g
2. 64 g
3. 2.0 g
4. 18 g

01410.0 points

Consider the reaction

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} .
$$

14.0 moles of N_{2} and 48.0 moles of H_{2} are reacted, producing 21.5 moles of NH_{3}. What is the percent yield?

1. 76.8%
2. 148.8%
3. 130.2%
4. 29.9%
5. 67.2%
6. Not enough information is given.
7. 100.0%
$015 \quad 10.0$ points
How much of a 4.45 M CaBr 2 solution can be prepared if one has 79.6 g of CaBr_{2} available?
8. 1.00 L
9. 0.0356 L
10. 0.115 L
11. 1.77 L
12. 1.65 L
13. 0.564 L
14. 0.0895 L
15. 3.54 L
$016 \quad 10.0$ points
What is the molarity of a solution prepared by dissolving 19.8 g of glucose (of MW 180 amu) in 115 mL of solution?
16. 0.00096 M
17. 172.2 M
18. 0.96 M
19. 0.172 M
$017 \quad 10.0$ points
How many mL of 12.0 M HCl are needed to make 2.0 L of 0.40 M HCl solution?
20. 420 mL
21. 17 mL
22. 15 mL
23. 96 mL
24. 67 mL

$018 \quad 10.0$ points

If 200 mL of water is evaporated from 400 mL of 0.5 M aqueous salt solution, what is the resulting concentration?

1. $2.5 \times 10^{-1} \mathrm{M}$
2. $2.5 \times 10^{0} \mathrm{M}$
3. None of these
4. $2.5 \times 10^{1} \mathrm{M}$
5. $2.5 \times 10^{-2} \mathrm{M}$

$019 \quad 10.0$ points

The oxidation numbers of nitrogen in NH_{3}, NO_{3}^{-}and NO are

1. $+3,+6$, and +2 , respectively.
2. $-3,+5$, and +1 , respectively.
3. $-3,+5$, and +2 , respectively.
4. $-3,+6$, and +2 , respectively.

$020 \quad 10.0$ points

Calculate the oxidation numbers for each element in RbO.

1. $\mathrm{Rb}=0, \mathrm{O}=0$
2. $\mathrm{Rb}=+3, \mathrm{O}=-2$
3. $\mathrm{Rb}=+2, \mathrm{O}=-2$
4. $\mathrm{Rb}=+1, \mathrm{O}=-2$
5. $\mathrm{Rb}=+1, \mathrm{O}=-1$

$021 \quad 10.0$ points

Which of the displacement reactions below occurs as written (don't worry about balancing)?

1. $\mathrm{Fe}^{3+}+\mathrm{Ag} \rightarrow \mathrm{Fe}+\mathrm{Ag}^{+}$
2. $\mathrm{Fe}^{3+}+\mathrm{Mg} \rightarrow \mathrm{Fe}+\mathrm{Mg}^{2+}$
3. $\mathrm{Na}^{+}+\mathrm{Zn} \rightarrow \mathrm{Na}+\mathrm{Zn}^{2+}$
4. $\mathrm{Ca}^{2+}+\mathrm{Au} \rightarrow \mathrm{Ca}+\mathrm{Au}^{+}$
5. None of the reactions occurs as written.
$022 \quad 10.0$ points
Identify the solid product that forms when the following aqueous solutions are mixed:

$$
\mathrm{CoCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow
$$

1. CoS and NaCl

2. No solid products are formed.
3. CoS and 2 NaCl
4. NaCl
5. CoS

$023 \quad 10.0$ points

Which of the following is best described as an acid-base reaction?

$$
\text { 1. } 2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}
$$

2. $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
3. $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$
4. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
5. $\mathrm{KCl}+\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$

$024 \quad 10.0$ points

The observed product from the reaction of FeCl_{2} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ is

1. There is no reaction.
2. KCl electrolyte.
3. CO_{2} gas.
4. FeCO_{3} precipitate.
5. Cl_{2} gas.
$025 \quad 10.0$ points
Zn is an active metal above H on the activity series. When zinc is placed in an acidic solution one of the products produced is
6. There is no reaction because Zn is above H.
7. H_{2}.
8. $\mathrm{H}_{2} \mathrm{O}$.
9. $\mathrm{Zn}(\mathrm{OH})_{2}$.

$026 \quad 10.0$ points

Which of the following aqueous solutions should form a precipitate with aqueous $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$?

1. $\mathrm{K}_{2} \mathrm{SO}_{4}$
2. KCl
3. KOH
4. KNO_{3}
$027 \quad 10.0$ points
Which aqueous solution should form a precipitate with aqueous $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$?
5. $\mathrm{K}_{2} \mathrm{SO}_{4}$
6. KNO_{3}
7. $\mathrm{K}_{2} \mathrm{~S}$
8. CuSO_{4}
$028 \quad 10.0$ points
Choose the pair of names and formulas that do not match.
9. NaNO_{3} : sodium nitrate
10. MgSO_{3} : magnesium sulfate
11. SiCl_{4} : silicon tetrachloride
12. $\mathrm{N}_{2} \mathrm{O}_{3}$: dinitrogen trioxide
13. SnCl_{4} : stannic chloride
$029 \quad 10.0$ points
Name the compound $\mathrm{K}_{2} \mathrm{CO}_{3}$.
14. potassium carbide
15. potassium(II) carbonate
16. potassium carboxide
17. potassium carbonate
$030 \quad 10.0$ points
Write the correct formula for ammonium phosphate.
18. $\left(3 \mathrm{NH}_{4}\right) \mathrm{PO}_{4}$
19. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
20. $\mathrm{NH}_{4} \mathrm{PO}_{4}$
21. $\mathrm{NH}_{4}\left(\mathrm{PO}_{4}\right)_{3}$
$031 \quad 10.0$ points
What is the name of the compound with the formula CCl_{4} ?
22. carbon chloride
23. carbon(IV) chloride
24. carbon tetrachloride
25. chlorine carbonide

$032 \quad 10.0$ points

The correct name for the compound AgBrO_{3} is

1. silver perbromate.
2. gold bromite.
3. silver bromoxide.
4. argon oxybromide.
5. silver bromate.

$033 \quad 10.0$ points

Choose the formula for the compound nitrous acid.

2. HN
 3. HNO_{3}
 4. HNO
 5. HNO_{2}
 6. $\mathrm{H}_{2} \mathrm{NO}_{3}$
 7. $\mathrm{H}_{2} \mathrm{NO}_{2}$
 8. $\mathrm{H}_{3} \mathrm{~N}$
 $034 \quad 10.0$ points

How many fluorine atoms are in 4.0 moles of fluorine molecules?

1. 1.5×10^{23} atoms
2. 4.8×10^{24} atoms
3. 6.6×10^{-24} atoms
4. 2.4×10^{24} atoms

$035 \quad 10.0$ points

Name the compound SO_{3}.

1. sulfite
2. sulfate
3. sulfur trioxide
4. sulfur oxide
5. sulfur(VI) oxide

$036 \quad 10.0$ points

Name the compound $\mathrm{Na}_{2} \mathrm{O}$.

1. sodium(I) oxide
2. sodium peroxide
3. disodium monoxide
4. sodium oxide
5. sodium(II) oxide

$037 \quad 10.0$ points

The following reactions are observed to take place in aqueous solution, and the reverse reactions do not occur.

$$
\begin{aligned}
& \mathrm{Ca}+\mathrm{Zn}^{2+} \rightarrow \mathrm{Zn}+\mathrm{Ca}^{2+} \\
& \mathrm{Al}+\mathrm{Zn}^{2+} \rightarrow \mathrm{Al}^{3+}+\mathrm{Zn} \\
& \mathrm{Ca}+\mathrm{Al}^{3+} \rightarrow \mathrm{Al}+\mathrm{Ca}^{2+} \\
& \mathrm{Zn}+\mathrm{Ag}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Ag}
\end{aligned}
$$

Which of the following lists the metals from most reactive to least reactive?

1. $\mathrm{Zn} ; \mathrm{Ag} ; \mathrm{Al} ; \mathrm{Ca}$
2. $\mathrm{Ag} ; \mathrm{Al} ; \mathrm{Ca} ; \mathrm{Zn}$
3. $\mathrm{Ca} ; \mathrm{Al} ; \mathrm{Zn} ; \mathrm{Ag}$
4. Al; $\mathrm{Zn} ; \mathrm{Ag} ; \mathrm{Ca}$

$038 \quad 10.0$ points

How many moles of the element carbon are in 10 moles of the compound benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$?

1. 60 mol
2. 12 mol
3. 10 mol
4. 1 mol
5. 0 mol
$039 \quad 10.0$ points
The name for $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is
6. potassium(I) carbon hydroxide.
7. potassium acetate.
8. potassium oxalate.
9. potassium(I) acetate.

$040 \quad 10.0$ points

Of the four compounds
$\mathrm{HF}, \mathrm{HClO}_{2}, \mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}$
which are either strong acids or strong bases
in water?

1. All are either strong acids or strong bases.

2. NaOH

3. HClO_{2} and NaOH

4. None are strong acids nor strong bases.
5. NaOH and $\mathrm{Ba}(\mathrm{OH})_{2}$
