This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

What is $K_{\rm sp}$ for Ag₃PO₄, if its molar solubility is 2.7×10^{-6} mol/L?

- 1. 5.3×10^{-23}
- **2.** 4.8×10^{-22}
- 3. 2.0×10^{-17}
- 4. 5.3×10^{-16}
- 5. 7.3×10^{-12}
- **6.** 1.7×10^{-14}
- 7. 1.4×10^{-21}

002 10.0 points

What is the molar solubility of CuBr in 0.5 M NaBr? The $K_{\rm sp}$ is 4.2×10^{-8} .

- 1. 2.05×10^{-4}
- **2.** 4.20×10^{-8}
- 3. 4.20×10^{-7}
- **4.** 8.40×10^{-8}
- **5.** 3.48×10^{-3}

003 10.0 points

A solution is 0.01 M BaCl₂ and 0.02 M SrCl₂. Which cation can be selectively precipitated first with a concentrated Na₂SO₄ solution? $K_{\rm sp}$ is 1.5×10^{-9} for BaSO₄, and 7.6×10^{-7} for SrSO₄.

- 1. Ba⁺²
- 2. Both will precipitate at the same time.
- 3. Sr^{+2}

004 10.0 points

Rank following salts from least to most soluble:

BiI
$$K_{sp} = 7.7 \times 10^{-19}$$

 $Cd_3(AsO_4)_2$ $K_{sp} = 2.2 \times 10^{-33}$
 $AlPO_4$ $K_{sp} = 9.8 \times 10^{-21}$
 $CaSO_4$ $K_{sp} = 4.9 \times 10^{-5}$

- 1. $BiI < Cd_3(AsO_4)_2 < CaSO_4 < AlPO_4$
- **2.** $AlPO_4 < BiI < Cd_3(AsO_4)_2 < CaSO_4$
- 3. $CaSO_4 < AlPO_4 < BiI < Cd_3(AsO_4)_2$
- 4. $Cd_3(AsO_4)_2 < CaSO_4 < AlPO_4 < BiI$

005 10.0 points

What is the molar solubility of PbCl₂ in an aqueous solution of 0.5 M NaCl? The $K_{\rm sp}$ of PbCl₂ is 1.14×10^{-5} .

- 1. 4.56×10^{-4}
- **2.** 2.28×10^{-5}
- 3. 1.14×10^{-5}
- **4.** 2.28×10^{-4}
- **5.** 4.56×10^{-5}

006 10.0 points

What is the molarity of a $FeSO_4$ solution if 25.0 mL of it reacts with 38.0 mL of 0.1214 M KMnO₄ solution?

$$MnO_4^- + 8 H^+ + 5 Fe^{2+} \rightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$

- **1.** 0.185 M
- **2.** 0.0798 M
- **3.** 0.923 M
- **4.** 0.399 M
- **5.** 0.426 M

007 10.0 points

What is the mass in grams of NH_3 titrated to the endpoint of a reaction with 10 mL of $0.02 N H_2SO_4$?

$$H_2SO_4 + 2 NH_3 \rightarrow SO_4^{-2} + 2 NH_4^+$$

- **1.** 0.0068 g
- **2.** 0.0034 g
- **3.** 0.0017 g
- **4.** 0.0002 g
- **5.** 0.0001 g

008 10.0 points

An animal cell assumes its normal volume when it is placed in a solution with a total solute molarity of 0.3 M. If the cell is placed in a solution with a total solute molarity of 0.1 M,

- 1. the escaping tendency of water in the cell increases.
 - 2. water enters the cell, causing expansion.
- **3.** water leaves the cell, causing contraction.
 - **4.** no movement of water takes place.

009 10.0 points

A decrease in temperature usually (decreases, increases, does not change) the solubility of salts in water.

- 1. increases
- 2. does not change
- **3.** decreases

010 10.0 points

Rank the following compounds from most

soluble to least soluble. Assume that all bonds except the OH are ionic. (You can estimate this ranking without using a calculator.)

Compound	$K_{ m sp}$
$\mathrm{Bi}_2\mathrm{S}_3$	1.0×10^{-97}
$Fe(OH)_2$	1.6×10^{-14}
PbI_2	2.6×10^{-13}
HgS	1.6×10^{-52}

- 1. $Fe(OH)_2 > PbI_2 > HgS > Bi_2S_3$
- **2.** $HgS > PbI_2 > Fe(OH)_2 > Bi_2S_3$
- 3. $PbI_2 > Fe(OH)_2 > Bi_2S_3 > HgS$
- 4. $Bi_2S_3 > Fe(OH)_2 > HgS > PbI_2$
- **5.** $PbI_2 > Fe(OH)_2 > HgS > Bi_2S_3$