This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

What is K_{sp} for Ag₃PO₄, if its molar solubility is 2.7×10^{-6} mol/L?

1.
$$5.3 \times 10^{-23}$$

- **2.** 4.8×10^{-22}
- **3.** 2.0×10^{-17}
- **4.** 5.3×10^{-16}
- **5.** 7.3×10^{-12}
- **6.** 1.7×10^{-14}
- **7.** 1.4×10^{-21} correct

Explanation:

 $S = 2.7 \times 10^{-6} \text{ mol/L}$ The solubility equilibrium is

$$Ag_3PO_4(s) \rightleftharpoons 3Ag^+(aq) + PO_4^{3-}(aq)$$

 $[\mathrm{Ag^+}] = 3 S = 8.1 \times 10^{-6} \mathrm{\ mol/L} \\ [\mathrm{PO}_4^{3-}] = S = 2.7 \times 10^{-6} \mathrm{\ mol/L}$

$$K_{\rm sp} = [{\rm Ag}^+]^3 [{\rm PO}_4^{3-}]$$

= $(8.1 \times 10^{-6})^3 (2.7 \times 10^{-6})$
= 1.43489×10^{-21}

10.0 points 002

What is the molar solubility of CuBr in 0.5 M $\,$ NaBr? The $K_{\rm sp}$ is 4.2×10^{-8} .

- 1. 2.05×10^{-4}
- **2.** 4.20×10^{-8}
- **3.** 4.20×10^{-7}
- **4.** 8.40×10^{-8} correct

5. 3.48×10^{-3}

Explanation:

003 10.0 points

A solution is 0.01 M BaCl₂ and 0.02 M SrCl₂. Which cation can be selectively precipitated first with a concentrated Na₂SO₄ solution? $K_{\rm sp}$ is 1.5×10^{-9} for BaSO₄, and 7.6×10^{-7} for $SrSO_4$.

1. Ba^{+2} correct

2. Both will precipitate at the same time.

3. Sr^{+2}

Explanation:

Before addition of Na₂SO₄ ... $S^{2+1} = 0.01 \text{ M}$ [Sr²⁺] = 0.02 M $[Ba^{2+}] = 0.01 \text{ M}$ Cl^{-} is a spectator ion to be ignored.

Each of the two cation concentrations listed above have a corresponding concentration of SO_4^{2-} that will cause each of these cations to precipitate (shown as ' \downarrow ') as the sulfate salt. We must calculate these two SO_4^{2-} concentrations and note which of the two is smaller (since we'll get to that one first as we increase the SO_4^{2-} concentration from zero).

$$\begin{split} \mathrm{SrSO}_4 &\to \mathrm{Sr}^{2+} + \mathrm{SO}_4^{2-} \\ K_{\mathrm{sp}} &= [\mathrm{Sr}^{2+}] \, [\mathrm{SO}_4^{2-}] \\ 7.6 \times 10^{-7} &= (0.02 \ \mathrm{M}) \, [\mathrm{SO}_4^{2-}] \\ [\mathrm{SO}_4^{2-}] &= 3.8 \times 10^{-5} \ \mathrm{M} \ \mathrm{for} \ \mathrm{SrSO}_4 \downarrow \\ \mathrm{BaSO}_4 &\to \mathrm{Ba}^{2+} + \mathrm{SO}_4^{2-} \\ K_{\mathrm{sp}} &= [\mathrm{Ba}^{2+}] \, [\mathrm{SO}_4^{2-}] \\ 1.5 \times 10^{-9} &= (0.01 \ \mathrm{M}) \, [\mathrm{SO}_4^{2-}] \end{split}$$

 $[\mathrm{SO}_4^{2-}] = 1.5 \times 10^{-8} \mathrm{M} \text{ for } \mathrm{BaSO}_4 \downarrow$

The concentration of sulfate ion that will cause $BaSO_4$ to precipitate is smaller than the concentration that will cause $SrSO_4$ to precipitate. Therefore, Ba^{+2} will be precipitated first.

Rank following salts from least to most soluble:

BiI	$\mathbf{K}_{sp} = 7.7 \times 10^{-19}$
$Cd_3(AsO_4)_2$	$K_{sp} = 2.2 \times 10^{-33}$
$AlPO_4$	$K_{sp} = 9.8 \times 10^{-21}$
$CaSO_4$	$\mathbf{K}_{sp} = 4.9 \times 10^{-5}$

1.
$$BiI < Cd_3(AsO_4)_2 < CaSO_4 < AlPO_4$$

2. $AlPO_4 < BiI < Cd_3(AsO_4)_2 < CaSO_4$ correct

3. $CaSO_4 < AlPO_4 < BiI < Cd_3(AsO_4)_2$

4. $Cd_3(AsO_4)_2 < CaSO_4 < AlPO_4 < BiI$

Explanation:

Molar solubility can be approximated by taking the nth root of the K_{sp} where n is the number of ions in the salt. Doing so results in approximate molar solubilities of 10^{-10} , 10^{-7} , 10^{-11} and 10^{-3} for bismuth iodide, cadmium arsenate, aluminum phosphate and calcium sulfate, respectively. Arranging these from least to greatest produces: AlPO₄ < BiI < Cd₃(AsO₄)₂ < CaSO₄.

005 10.0 points

What is the molar solubility of PbCl₂ in an aqueous solution of 0.5 M NaCl? The $K_{\rm sp}$ of PbCl₂ is 1.14×10^{-5} .

1.
$$4.56 \times 10^{-4}$$

- **2.** 2.28×10^{-5}
- **3.** 1.14×10^{-5}
- **4.** 2.28×10^{-4}
- **5.** 4.56×10^{-5} correct

Explanation:

006 10.0 points

What is the molarity of a FeSO₄ solution if 25.0 mL of it reacts with 38.0 mL of 0.1214 M KMnO₄ solution? $MnO_4^- + 8 H^+ + 5 Fe^{2+} \rightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$ 0.185 M
 0.0798 M
 0.923 M correct
 0.399 M
 0.426 M
 Explanation:

007 10.0 points

What is the mass in grams of NH_3 titrated to the endpoint of a reaction with 10 mL of $0.02 N H_2SO_4$?

$$\mathrm{H}_2\mathrm{SO}_4 + 2\ \mathrm{NH}_3 \rightarrow \mathrm{SO}_4^{-2} + 2\ \mathrm{NH}_4^+$$

- **1.** 0.0068 g
- **2.** 0.0034 g correct
- **3.** 0.0017 g
- **4.** 0.0002 g
- **5.** 0.0001 g

Explanation:

$$\begin{split} V_{H_2SO_4} &= 10 \text{ mL} & N_{H_2SO_4} = 0.02 \text{ N} \\ MW_{H_2SO_4} &= 98 \text{ g/mol} & MW_{NH_3} = 17 \text{ g/mol} \\ EqW &= \frac{MW}{\text{number reactive sites in molecule}}, \text{ so} \\ EqW_{H_2SO_4} &= \frac{98 \text{ g/mol}}{2 \text{ eq/mol}} = 49 \text{ g/eq H}_2SO_4 \\ EqW_{H_2SO_4} &= \frac{17 \text{ g/mol}}{1 \text{ eq/mol}} = 17 \text{ g/eq NH}_3 \\ eq acid &= eq base \\ ? eq H_2SO_4 &= 0.02 \text{ N} \times \frac{eq}{\text{N} \cdot \text{L soln}} \\ &\qquad \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 10 \text{ mL} \\ &= 0.0002 \text{ eq H}_2SO_4 \\ &= 0.0002 \text{ eq NH}_3 \\ ? \text{ g NH}_3 &= 0.0002 \text{ eq NH}_3 \times \frac{17 \text{ g NH}_3}{\text{eq NH}_3} \\ &= 0.0034 \text{ g NH}_3 \end{split}$$

008 10.0 points

An animal cell assumes its normal volume when it is placed in a solution with a total solute molarity of 0.3 M. If the cell is placed in a solution with a total solute molarity of 0.1 M,

1. the escaping tendency of water in the cell increases.

2. water enters the cell, causing expansion. correct

3. water leaves the cell, causing contraction.

4. no movement of water takes place.

Explanation:

009 10.0 points

A decrease in temperature usually (decreases, increases, does not change) the solubility of salts in water.

 $\mathbf{1.} \text{ increases}$

2. does not change

3. decreases correct

Explanation:

Most salts are less soluble at lower temperature.

010 10.0 points

Rank the following compounds from most soluble to least soluble. Assume that all bonds except the OH are ionic. (You can estimate this ranking without using a calculator.)

Compound	$K_{ m sp}$
$\mathrm{Bi}_2\mathrm{S}_3$	1.0×10^{-97}
$Fe(OH)_2$	1.6×10^{-14}
PbI_2	2.6×10^{-13}
HgS	1.6×10^{-52}

1. $Fe(OH)_2 > PbI_2 > HgS > Bi_2S_3$

2. $HgS > PbI_2 > Fe(OH)_2 > Bi_2S_3$

3. $PbI_2 > Fe(OH)_2 > Bi_2S_3 > HgS$ correct

4. $Bi_2S_3 > Fe(OH)_2 > HgS > PbI_2$

5. $PbI_2 > Fe(OH)_2 > HgS > Bi_2S_3$

Explanation: