This print-out should have 14 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

Which K_{a} value(s) would you use when calculating the pH of a system involving $\mathrm{Li}_{2} \mathrm{HPO}_{4}$ and $\mathrm{Li}_{3} \mathrm{PO}_{4}$?

1. $K_{a 2}, K_{a 3}$
2. $K_{a 1}$
3. $K_{a 2}$
4. $K_{a 3}$
5. $K_{a 1}, K_{a 2}$

00210.0 points

One difference between a Lewis base and an Arrhenius base is

1. a Lewis base is a proton acceptor and an Arrhenius base produces hydroxide ions in solution.
2. a Lewis base is an electron pair acceptor and an Arrhenius base is a proton acceptor.
3. a Lewis base is an electron pair donor and an Arrhenius base is a proton acceptor.
4. a Lewis base is an electron pair acceptor and an Arrhenius base is a proton donor.
5. a Lewis base is an electron pair donor and an Arrhenius base produces hydroxide ions in solution.

00310.0 points

Which of the acids
I. $\mathrm{HBrO}_{3} \quad$ II. $\mathrm{GaCl}_{3} \quad$ III. HSO_{4}^{-}
IV. AlF_{3}
are classified as Lewis acids but are not Bronsted-Lowry acids?
2. II and IV
3. None of these
4. II and III
5. I and IV

$004 \quad 10.0$ points

Listed in order of increasing acid strength, which pair is incorrect?

1. $\mathrm{HNO}_{3}<\mathrm{HNO}_{2}$
2. $\mathrm{H}_{3} \mathrm{AsO}_{4}<\mathrm{H}_{3} \mathrm{PO}_{4}$
3. $\mathrm{HF}<\mathrm{HCl}$
4. $\mathrm{H}_{3} \mathrm{As}<\mathrm{H}_{2} \mathrm{Se}$
5. $\mathrm{HClO}<\mathrm{HClO}_{2}$

$005 \quad 10.0$ points

Which one of the following pairs of acids and their conjugate bases is INCORRECTLY matched?

1. $\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$
2. $\mathrm{H}_{3} \mathrm{O}^{+}: \mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{HClO}: \mathrm{ClO}^{-}$
4. $\mathrm{NH}_{4}^{+}: \mathrm{NH}_{2}^{-}$
5. $\mathrm{HF}: \mathrm{F}^{-}$

$006 \quad 10.0$ points

A 0.0001 M solution of HCl has a pH of

1. 11.
1. 10.
1. 3.
1. 4 .
00710.0 points

Arrange the acids
I) phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$,
$\mathrm{p} K_{\mathrm{a} 1}=2.00 ;$
II) hydrogen selenate ion $\left(\mathrm{HSeO}_{4}^{-}\right)$,
$\mathrm{p} K_{\mathrm{a}}=1.92 ;$
III) phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$, $\mathrm{p} K_{\mathrm{a}}=2.12$;
IV) selenous acid $\left(\mathrm{H}_{2} \mathrm{SeO}_{3}\right)$, $\mathrm{p} K_{\mathrm{a}}=2.46$;
in increasing order of strengths.

1. Cannot be determined
2. II, I, III, IV
3. None of these
4. III, I, IV, II
5. II, IV, I, III
6. IV, I, III, II
7. II, III, IV, I
8. IV, III, I, II
9. I, IV, III, II
10. II, III, I, IV
$008 \quad 10.0$ points
Which of
I) $\mathrm{HCl} \quad \mathrm{II}) \mathrm{HF} \quad \mathrm{III}) \mathrm{LiOH}$
IV) $\mathrm{HClO}_{2} \quad$ V) HNO_{3}
are strong acids or strong bases in water?
11. All of the compounds
12. I, III, and V only
13. I, II, IV, and V only
14. I, III, IV, and V only
15. I, II, III, and V only
00910.0 points

Assume that five weak acids, identified only
by numbers ($1,2,3,4$ and 5), have the following ionization constants.

Acid	Ionization Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the weakest base?

1. 3
2. 5
3. 2
4. 4
5. 1

$010 \quad 10.0$ points

What is the pH of $2 \times 10^{-9} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?

1. 8.40
2. 8.70
3. 7.02
4. 5.60
5. 5.30
$011 \quad 10.0$ points
For a solution labeled " $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$,"
6. $\left[\mathrm{HSO}_{4}^{-}\right]$is greater than 0.10 M .
7. the pH is less than 1.0.
8. $\left[\mathrm{SO}_{4}^{2-}\right]=0.10 \mathrm{M}$.
9. the pH equals 1.0.
10. the pH is greater than 1.0.
$012 \quad 10.0$ points
Estimate the pH of $0.10 \mathrm{M} \mathrm{Na} 2 \mathrm{HPO}_{4}(\mathrm{aq})$
given $\mathrm{p} K_{\mathrm{a} 1}=2.12, \mathrm{p} K_{\mathrm{a} 2}=7.21$, and $\mathrm{p} K_{\mathrm{a} 3}=$ 12.68 for phosphoric acid.
11. 4.67
12. 7.40
13. 9.94
14. 2.12
15. 12.68

$013 \quad 10.0$ points

Consider the titration of equal volumes of 0.1 M HCl and $0.1 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ with 0.1 M NaOH . Which of the following would be the same for both titrations?

1. the volume of NaOH added to reach the equivalence point
2. the pH at the halfway point
3. the pH at the equivalence point
4. the initial pH
5. Two of the other answers are correct.

$014 \quad 10.0$ points

What would be the pH of a solution of hypobromous acid (HOBr) prepared by dissolving 9.7 grams of the acid in 20 mL of pure water $\left(\mathrm{H}_{2} \mathrm{O}\right)$? The Ka of hypobromous acid is 2×10^{-9}

1. 13
2. 1
3. 10
4. 4
5. 6
