This print-out should have 14 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

## $001 \quad 10.0$ points

What is the pH of a solution containing 50 mL of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ and 150 mL of 0.1 M NaOH ?

1. 2.00
2. 1.30
3. 0.70
4. 7.00
5. 0.30

## 00210.0 points

According to the Bronsted-Lowry definition, a base is

1. a substance that increases the anion formed by the autoionization of the solvent.

## 2. None of these

3. a substance that can donate an electron pair to the formation of a covalent bond.
4. a substance that can accept a proton from an acid.
5. a substance that increases the hydroxide ion concentration in water.

## 00310.0 points

According to Lewis theory, an acid is

1. any compound that can donate an electron pair.
2. any compound that can accept a share of an electron pair.
3. any compound that can accept a proton.
4. any compound containing hydrogen.
5. any compound that can donate a proton.

## $004 \quad 10.0$ points

Which of the following would be expected to act as a Lewis acid?

1. $\mathrm{BF}_{3}$
2. $\mathrm{OH}^{-}$
3. $\mathrm{H}_{3} \mathrm{O}^{+}$
4. $\mathrm{NH}_{4}^{+}$
5. $\mathrm{NH}_{3}$
$005 \quad 10.0$ points
Which acid has the strongest conjugate base?
6. HCl
7. $\mathrm{HClO}_{2}$
8. $\mathrm{HClO}_{4}$
9. $\mathrm{HClO}_{3}$
10. HClO

## $006 \quad 10.0$ points

You have a weak molecular base with $K_{\mathrm{b}}=$ $6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of this weak base?

1. $\mathrm{pH}=9.26$
2. $\mathrm{pH}=3.63$
3. $\mathrm{pH}=7.12$
4. None of these
5. $\mathrm{pH}=4.74$
$007 \quad 10.0$ points
A solution of 0.2 M boric acid is prepared as an eye wash. What is the approximate pH of
this solution? For boric acid $K_{\mathrm{a}}=7.2 \times 10^{-10}$.
6. $\mathrm{pH}=5$
7. $\mathrm{pH}=7$
8. $\mathrm{pH}=3$
9. $\mathrm{pH}=4$
10. $\mathrm{pH}=6$

## $008 \quad 10.0$ points

Of the four compounds

$$
\mathrm{HF}, \mathrm{HClO}_{2}, \mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}
$$

which are either strong acids or strong bases in water?

1. All are either strong acids or strong bases.

## 2. NaOH

3. None are strong acids nor strong bases.
4. $\mathrm{HClO}_{2}$ and NaOH
5. NaOH and $\mathrm{Ba}(\mathrm{OH})_{2}$

## $009 \quad 10.0$ points

What is the pH of a solution containing 0.3 M NH 44 Cl and $0.6 \mathrm{M} \mathrm{NH}_{3}$ ? The $\mathrm{p} K_{\mathrm{a}}$ of the ammonium ion is 9.25 .

1. 9.55
2. 8.95
3. 12.25
4. 5.05
5. 4.45

## $010 \quad 10.0$ points

Consider the titration curve of a weak base with a strong acid


Volume of acid added
The pOH at point I is equal to the $\qquad$ and the pH at point II is __ pH 7 .

1. $\mathrm{p} K_{\mathrm{b}}$ of the base, less than
2. pH of the base, less than
3. $\mathrm{p} K_{\mathrm{b}}$ of the base, equal to
4. $\mathrm{p} K_{\mathrm{b}}$ of the base, greater than
5. pH of the base, greater than

## $011 \quad 10.0$ points

Which equation represents $K_{\mathrm{a} 2}$ for phosphoric acid?

$$
\begin{aligned}
& \text { 1. } \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \qquad \mathrm{PO}_{4}^{3-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

2. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

3. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$ $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
4. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$ $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
5. $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$012 \quad 10.0$ points
The pH of $0.010 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is 2.24 . Estimate the concentration of $\mathrm{HPO}_{4}^{2-}$ in the solution. For $\mathrm{H}_{3} \mathrm{PO}_{4}$, the values of $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}$, and
$K_{\text {a3 }}$ are $7.6 \times 10^{-3}, 6.2 \times 10^{-8}$, and $2.1 \times 10^{-13}$, respectively.

1. $6.2 \times 10^{-8} \mathrm{M}$
2. $5.8 \times 10^{-3} \mathrm{M}$
3. $2.1 \times 10^{-13} \mathrm{M}$
4. 0.010 M
5. $7.6 \times 10^{-3} \mathrm{M}$

## 01310.0 points

List the bases
$\mathrm{CN}^{-},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{BrO}^{-}$
in order of decreasing strength, if

| Base | $\mathrm{p} K_{\mathrm{b}}$ | Acid | $\mathrm{p} K_{\mathrm{a}}$ |
| :--- | :--- | :--- | :--- |
| $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ | 2.99 | HBrO | 8.69 |
| $\mathrm{~N}_{2} \mathrm{H}_{4}$ | 5.77 | HCN | 9.31 |

1. $\mathrm{CN}^{-}, \mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{BrO}^{-},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
2. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{BrO}^{-}, \mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{CN}^{-}$
3. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{BrO}^{-}, \mathrm{CN}^{-},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
4. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{CN}^{-}, \mathrm{BrO}^{-}, \mathrm{N}_{2} \mathrm{H}_{4}$
5. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{BrO}^{-}, \mathrm{CN}^{-}, \mathrm{N}_{2} \mathrm{H}_{4}$
6. $\mathrm{BrO}^{-},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{CN}^{-}$
7. None of these
8. $\mathrm{CN}^{-}, \mathrm{N}_{2} \mathrm{H}_{4},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{BrO}^{-}$
9. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{CN}^{-}, \mathrm{BrO}^{-},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
$014 \quad 10.0$ points
What would be the pH of a solution prepared from 2 L of 0.05 M HClO and 1 L of 3.16 M NaClO ? The $K_{a}$ of chlorous acid is $3.16 \times 10^{-8}$.
10. 6
11. 7.5
12. 9
13. 9.3
