Spring 2009 CH302 Practice Exam 1

1. In general, increasing the temperature favors which phase changes?
2. sublimation, vaporization, fusion
3. sublimation, vaporization, condensation
4. fusion, vaporization, deposition
5. vaporization, freezing, deposition
6. freezing, deposition, condensation
7. Vapor pressure:
A. Is an equilibrium process
B. increases as IMF increases
C. is temperature dependent
D. is higher in $\mathrm{CH}_{3} \mathrm{CH}_{3}$ than H_{2}
E. decreases with the addition of solutes
F. depends on the whole volume of the liquid
G. decreases at temp increases
1.A, C, E, G
8. A, B, C, E
9. A, C, D, E
10. B, D, F, G
11. A, C, E
12. A, C, E, F
13. Rank the following in decreasing order of solubility in water:
$\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{NaCl}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CsI}, \mathrm{BeBr}_{2}, \mathrm{KOH}, \mathrm{BaO}$.
14. $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{BaO}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{BeBr}_{2}>\mathrm{KOH}>\mathrm{NaCl}>\mathrm{CsI}$
15. $\mathrm{NaCl}>\mathrm{CsI}>\mathrm{KOH}>\mathrm{BeBr}_{2}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{BaO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
16. $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{BaO}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{BeBr}_{2}>\mathrm{KOH}>\mathrm{NaCl}>\mathrm{CsI}$
17. $\mathrm{CsI}>\mathrm{NaCl}>\mathrm{KOH}>\mathrm{BeBr}_{2}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{BaO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
18. $\mathrm{NaCl}>\mathrm{CsI}>\mathrm{BeBr}_{2}>\mathrm{KOH}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{BaO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
19. $\mathrm{CsI}>\mathrm{NaCl}>\mathrm{BeBr}_{2}>\mathrm{KOH}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{BaO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
20. According to the given phase diagram for carbon, how many triple points are there? What would you expect to see at $0.01 \mathrm{GPa}, 4500 \mathrm{~K}$?
21. 5; metastable liquid, graphite and liquid
22. 4; graphite, metastable liquid and vapor.
23. 5; vapor, metastable liquid, graphite.
24. 4; graphite, liquid, diamond.
25. 3; graphite, metastable liquid and vapor.
26. According to the given pressure-temperature diagram, a sample of carbon at 0.005 GPa and 2000 K is graphite. This sample is then heated to 7000 K at constant pressure. Then, at constant temperature, the sample is compressed to 1.00 GPa . Again, at constant pressure, the temperature is decreased to 1000 K . At this temperature, the pressure is increased to 500 GPa . How many phase transitions has the carbon sample undergone?
27. 6
28. 4
29. 1
30. 5
31. 7
32. How much heat is generated when 10 g steam at $115^{\circ} \mathrm{C}$ is cooled to $-75^{\circ} \mathrm{C}$?
$C_{\text {ice }}=\mathrm{a} \mathrm{J} / \mathrm{g}^{\circ} \mathrm{C} ; \mathrm{C}_{\text {water }}=\mathrm{bJ} / \mathrm{g}^{\circ} \mathrm{C} ; \mathrm{C}_{\text {steam }}=\mathrm{cJ} / \mathrm{g}^{\circ} \mathrm{C} ; \Delta \mathrm{H}_{\text {vap }}=\mathrm{dJ} / \mathrm{g} ; \Delta \mathrm{H}_{\text {fus }}=\mathrm{e} \mathrm{J} / \mathrm{g}$.
33. $q=-[150(5 a+c)+10(100 b+d+e)] J$
34. $q=[150(5 a+c)+10(100 b+d+e)] J$
35. $q=-[150(a+c)+10(100 b+d+e)] J$
36. $q=[150(a+c)+1000 b]]$
37. $q=-[150(5 a+c)+1000 b] J$
38. Which solvent would you expect BH_{3} gas to be most soluble in?
39. $\mathrm{C}_{6} \mathrm{H}_{6}$
40. $\mathrm{H}_{2} \mathrm{O}$
41. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
42. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
43. $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$
44. Rank the following in decreasing order of miscibility with water: $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}$, and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$.
45. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}>\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}>\mathrm{C}_{6} \mathrm{H}_{6}$
46. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}>\mathrm{C}_{6} \mathrm{H}_{6}$
47. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}>\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}>\mathrm{C}_{6} \mathrm{H}_{6}$
48. $\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}>\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}>\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}$
49. $\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}>\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
50. At 25 C , the vapor pressure of pure benzene (C 6 H 10) is 0.1252 atm . Suppose 6.4 g of napthalene, C 10 H 8 , is dissolved in 78 g of benzene (benzene's molar mass is $78 \mathrm{~g} / \mathrm{mol}$). Assuming ideal behavior, what is the vapor pressure of benzene over the solution?
51. 0.9525 atm
52. 0.119 atm
53. 0.1252 atm
54. Water has a vapor pressure of 24 mmHg at $25^{\circ} \mathrm{C}$ and a heat of vaporization of $40.7 \mathrm{~kJ} / \mathrm{mol}$. What is the vapor pressure of water at $67^{\circ} \mathrm{C}$?
55. 182 mmHg
23.15 mmHg
56. 760 mmHg
57. 0 mmHg
58. For the following made-up reaction, where $\mathrm{K}_{200 \mathrm{~K}}=0.0035$ and $\mathrm{K}_{300 \mathrm{~K}}=0.38$, solve for the enthalpy change for the reaction.
$A+X<->A X$
59. $\Delta \mathrm{H}=23.3 \mathrm{~kJ} / \mathrm{mol}$
60. $\Delta \mathrm{H}=-48 \mathrm{~kJ} / \mathrm{mol}$
61. $\Delta \mathrm{H}=48 \mathrm{~kJ} / \mathrm{mol}$
62. $\Delta \mathrm{H}=-23.3 \mathrm{~kJ} / \mathrm{mol}$
63. The vapor pressure is always less above the (pure solvent or dilute solution) than it is above the (pure solvent or dilute solution).
64. dilute solution, pure solvent
65. pure solvent, dilute solution
66. If you add 45 g of NaCl to 500 g of water, what will the melting and boiling points be of the resulting solution? For liquid water, $\mathrm{K}_{\mathrm{b}}=0.52 \mathrm{C} / \mathrm{m}$ and $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{C} / \mathrm{m}$. Answer should be in the form of (melting pt, boiling pt)
67. $101.6 \mathrm{C}, 5.73 \mathrm{C}$
68. $5.73 \mathrm{C}, 101.6 \mathrm{C}$
69. $-5.73 \mathrm{C}, 101.6 \mathrm{C}$
70. $-5.73 \mathrm{C}, 98.4 \mathrm{C}$
71. Iron thiocyanate $\left(\mathrm{FeSCN}^{2+}\right)$ is a complex ion that appears orange-red in solution

Iron (III) and thiocyanate ions are both colorless in solution. All species are aqueous.
$\mathrm{FeSCN}^{2+}<->\mathrm{Fe}^{3+}+\mathrm{SCN}^{-}$
Set up the equilibrium expression for the reaction:

1. $\mathrm{K}=\left[\mathrm{FeSCN}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right][\mathrm{SCN}-]$
2. $\mathrm{K}=\left[\mathrm{Fe}^{3+}\right][\mathrm{SCN}-] /\left[\mathrm{FeSCN}^{2+}\right]$
3. $\mathrm{K}=\left[\mathrm{Fe}^{3+}\right]^{3}[\mathrm{SCN}-] /\left[\mathrm{FeSCN}^{2+}\right]^{2}$
4. $K=\left[\mathrm{FeSCN}^{2+}\right]^{2} /\left[\mathrm{Fe}^{3+}\right]^{3}[\mathrm{SCN}-]$
5. For the decomposition of gaseous water into hydrogen and oxygen gas, $K=8 \times 10-41$

With this information, is water a good source of oxygen at room temperature?

1. Yes
2. No
3. The gas-phase dissociation of phosphorus pentachloride to the trichloride has $\mathrm{Kp}=3.60$ at $540^{\circ} \mathrm{C}$:

$$
\mathrm{PCl}_{5} \quad \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

What will be the partial pressures of all three components if 0.200 mole of PCl_{5} and 3.00 moles of PCl_{3} are combined and brought to equilibrium at this temperature?

1. $\mathrm{P}\left(\mathrm{PCl}_{5}\right)=2 \mathrm{~atm}, \mathrm{P}\left(\mathrm{PCl}_{3}\right)=3 \mathrm{~atm}, \mathrm{P}\left(\mathrm{Cl}_{2}\right)=0 \mathrm{~atm}$
2. $\mathrm{P}\left(\mathrm{PCl}_{5}\right)=3.159, \mathrm{P}\left(\mathrm{PCl}_{3}\right)=1.41 \mathrm{~atm}, \mathrm{P}\left(\mathrm{Cl}_{2}\right)=0.159 \mathrm{~atm}$
3. $\mathrm{P}\left(\mathrm{PCl}_{5}\right)=0.41 \mathrm{~atm}, \mathrm{P}\left(\mathrm{PCl}_{3}\right)=4.59 \mathrm{~atm}, \mathrm{P}\left(\mathrm{Cl}_{2}\right)=1.59 \mathrm{~atm}$
4. $\mathrm{P}\left(\mathrm{PCl}_{5}\right)=0.041 \mathrm{~atm}, \mathrm{P}\left(\mathrm{PCl}_{3}\right)=3.159 \mathrm{~atm}, \mathrm{P}\left(\mathrm{Cl}_{2}\right)=0.159 \mathrm{~atm}$
5. For the following reaction, the partial pressures of carbon dioxide, water, methane, and oxygen all are the same at equilibrium. What is their partial pressure?
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})<->\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{Keq}=5$
6. 1 atm
7. 5 atm
8. 10 atm
9. $\quad 0.2 \mathrm{~atm}$
10. $\quad 0.1 \mathrm{~atm}$
11. For the following reaction, $\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})<->4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{K}_{\mathrm{eq}}=10 \mathrm{~atm}$. The initial pressures of oxygen, carbon dioxide, and water are $1 \mathrm{~atm}, 0.5 \mathrm{~atm}$, and 0.5 atm respectively. Which of the following is true for this system?
12. To approach equilibrium, the reaction must shift left
13. More butene $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ needs to be oxidized to reach equilibrium
14. A reagent that removes water vapor would help the system reach equilibrium faster
15. The reaction is now at equilibrium
16. Both 2 and 3 are true
17. For the reaction $3 A(\mathrm{~g})+B(\mathrm{~g})<->C(\mathrm{~s})+\mathrm{D}(\mathrm{g}), \Delta H=-100 \mathrm{~J}$. Which of the following would minimize the formation of C ?
I. Decreasing the volume of the container
II. Heating the reaction
III. Removing A from the reaction
IV. Performing the reaction at a very high attitude
18. I
19. II
20. III
21. IV
22. II and III
23. II, III, and IV
24. All of the above
25. Consider the exothermic combustion of hydrogen, $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$. Which of the following would shift the reaction to the same direction?
I. Continuously removing water from the reaction
II. Heating the reaction
III. Decreasing the size of the container
26. I and II
27. I and III
28. II and III
29. None
30. Which of the following gives the correct pair of equilibrium constant, K , and change in free energy, ΔG ?
31. $\mathrm{K}=3, \Delta \mathrm{G}=3 \mathrm{~kJ} / \mathrm{mol}$
32. $\mathrm{K}=1, \Delta \mathrm{G}=-1 \mathrm{~kJ} / \mathrm{mol}$
33. $\mathrm{K}=0, \Delta \mathrm{G}=0 \mathrm{~kJ} / \mathrm{mol}$
34. $\mathrm{K}=0.1, \Delta \mathrm{G}=-5 \mathrm{~kJ} / \mathrm{mol}$
35. $\mathrm{K}=5, \Delta \mathrm{G}=-4 \mathrm{~kJ} / \mathrm{mol}$
36. The auto-protolysis of water:
I. Produces more hydrogen ions at higher temperatures
II. Produces more hydroxide ions at higher temperatures
III. Explains why water can only have a pH of 7
37. I
38. II
39. III
40. I and II
41. I, II, and III
42. At $100^{\circ} \mathrm{C}$, the pH of water is 6.145 , what is the Kw of water at this temperature?
43. $\quad 1.00 \times 10^{-14}$
44. $\quad 5.13 \times 10^{-13}$
45. 0.53×10^{-14}
46. $\quad 8.81 \times 10^{-15}$
47. $\quad 7.01 \times 10^{-16}$
48. Determine the molar solubility of copper I thiocyante (CuSCN) whose $\mathrm{Ksp}=1.64 \times 10^{-11}$.
49. $2 \times 10^{-3} \mathrm{M}$
50. $4 \times 10^{-6} \mathrm{M}$
51. $1 \times 10^{-2} \mathrm{M}$
52. $2 \times 10^{-1} \mathrm{M}$
53. Rank the following generic compounds from most to least soluble:

CA $\mathrm{Ksp}=10^{-8}$
$\mathrm{C}_{2} \mathrm{~A}_{3} \quad \mathrm{Ksp}=10^{-20}$
$\mathrm{CA}_{3} \mathrm{Ksp}=10^{-16}$
$\mathrm{C}_{2} \mathrm{~A} \quad \mathrm{Ksp}=10^{-12}$

1. $C_{3}>C_{2} A_{3}>C A>C_{2} A$
2. $C_{2} A>C A_{3}>C_{2} A_{3}>C A$
3. $C A>C_{2} A>C A_{3}>C_{2} A_{3}$
4. $\mathrm{C}_{2} \mathrm{~A}_{3}>C A>\mathrm{C}_{2} \mathrm{~A}>\mathrm{CA}_{3}$
5. Which equation below could be used to convert [$\mathrm{H}+$] into pOH ?
6. $\mathrm{pOH}=-\log \mathrm{kW}+\log [\mathrm{H}+]$
7. $\mathrm{pOH}=\log (\mathrm{Kw} /[\mathrm{H}+])$
8. $\mathrm{pOH}=\mathrm{pKw}+\mathrm{pH}$
9. all of these equations could be used
10. none of these equations could be used
11. Rank the following acids in the order of decreasing strength of their conjugate bases (strongest conjugate base to weakest conjugate base):
propionic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right) \quad$ pKa $=4.89$
hypochlorous acid (HClO) $\quad \mathrm{pKa}=7.46$
formic acid $(\mathrm{CHOOH}) \quad \mathrm{pKa}=3.74$
nitrous acid $\left(\mathrm{HNO}_{2}\right) \quad \mathrm{pKa}=3.40$
12. $\mathrm{CHOOH}>\mathrm{HNO}_{2}>\mathrm{HClO}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
13. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\mathrm{CHOOH}>\mathrm{HNO}_{2}>\mathrm{HClO}$
14. $\mathrm{HClO}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\mathrm{CHOOH}>\mathrm{HNO}_{2}$
15. $\mathrm{HNO}_{2}>\mathrm{HClO}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\mathrm{CHOOH}$
16. What would be the pH of a 0.05 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ (Calcium Hydroxide) at room temperature?
17. 12.7
18. 13
19. 1.3
20. 1
21. What would be the pH of a 0.04 M solution of phenylammonium chloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}\right)$ at room temperature? (assume the K_{b} of phenylamine is 4×10^{-10})
22. 11
23. 5.4
24. 8.6
25. 3
26. 7
27. If you had a 1 M solution of acetic acid $(\mathrm{CH} 3 \mathrm{COOH}, \mathrm{Ka}=1.8 \times 10-5)$ and a 1 M solution of formic acid $(\mathrm{CHOOH}, \mathrm{Ka}=1.8 \times 10-4)$, what would the difference in their pH be?
28. 3.2
29. 1.0
30. 0.5
31. 2.4
32. 2.9
