Spring 2009 CH302 Practice Exam 2 Answer Key

1. What would be the pH of a solution prepared by dissolving 120.1 g of $\mathrm{CH}_{3} \mathrm{COOH}$ and 82 g of $\mathrm{NaCH}_{3} \mathrm{COO}$ in 1 L of water? Acetic acid has a K_{a} of 1.8×10^{-5}.
2. 5.05
3. 4.78
4. 4.12
5. 4.44 Correct

Explanation:
$120.1 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH} \times(1 \mathrm{~mol} / 60.05 \mathrm{~g})=2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$
82 g of $\mathrm{NaCH}_{3} \mathrm{COO} \times(1 \mathrm{~mol} / 82.03 \mathrm{~g})=1 \mathrm{~mol} \mathrm{NaCH}_{3} \mathrm{COO}$
For a buffer composed of a weak acid and its conjugate base,
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}\left(\mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}\right)=1.8 \times 10^{-5}(2 / 1)=3.6 \times 10^{-5}$
$\mathrm{pH}=4.44$
Note, it is adequate to use the moles of HA and A^{-}in place of their final concentrations.
2. Which of the following pairs of solutions would not result in a buffer upon mixing?

1. 100 mL of $10 \mathrm{mM} \mathrm{NaOH} \& 80 \mathrm{~mL}$ of $20 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}$
2. 20 mL of $0.3 \mathrm{M} \mathrm{NaF} \& 12 \mathrm{~mL}$ of 0.4 M HCl
3. 0.4 L of $10 \mathrm{mM} \mathrm{HClO}_{3} \& 0.5 \mathrm{~L}$ of $8 \mathrm{mM} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ Correct
4. 2 L of $1.35 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2} \& 3 \mathrm{~L}$ of 2 M CHOOH

Explanation: A buffer prepared by a neutralization reaction requires a weak acid mixed with less strong base or a weak base mixed with less strong acid. The only pair of solutions which fails to satisfy this constraint is 0.4 L of $10 \mathrm{mM} \mathrm{HClO3}$ and 0.5 L of $8 \mathrm{mM} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$.

3 Consider the following acids and their provided $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$. Rank them in terms of increasing strength of their conjugate bases.
$\mathrm{CH}_{3} \mathrm{COOH} \quad \mathrm{pK}_{\mathrm{a}}=4.75$
$\mathrm{CH}_{3} \mathrm{CHOHCOOH} \quad \mathrm{pK}_{\mathrm{a}}=3.85$
$\mathrm{CHOOH} \quad \mathrm{pK}_{\mathrm{a}}=3.74$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \quad \mathrm{pK}_{\mathrm{a}}=4.88$

1. $\mathrm{CHOOH}<\mathrm{CH}_{3} \mathrm{CHOHCOOH}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ Correct
2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{CHOOH}<\mathrm{CH}_{3} \mathrm{CHOHCOOH}<\mathrm{CH}_{3} \mathrm{COOH}$
3. $\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{CHOOH}<\mathrm{CH}_{3} \mathrm{CHOHCOOH}$
4. $\mathrm{CH}_{3} \mathrm{CHOHCOOH}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{CHOOH}$

Explanation: The strength of an acid's conjugate base is directly proportional to the pK_{a} of the acid.

4 Which of the following buffers could absorb the greatest amount of strong base before being exhausted?

1. 45 mL of $2 \mathrm{mM} \mathrm{N}_{2} \mathrm{H}_{5} \mathrm{Cl}, 4 \mathrm{mM} \mathrm{N}_{2} \mathrm{H}_{4}$
2. 3.2 L of $0.4 \mathrm{M} \mathrm{HClO}, 0.5 \mathrm{NaClO}$ Correct
3. 2 L of $9 \mathrm{mM} \mathrm{HF}, 7 \mathrm{mM} \mathrm{NaF}$
4. 0.3 L of $0.4 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}, 0.6 \mathrm{M} \mathrm{NH}_{3}$
5. 20 mL of $5 \mathrm{M} \mathrm{CHOOH}, 4 \mathrm{M} \mathrm{NaCHOO}$

Explanation: Any strong base added to a buffer will react with and be neutralized by the weak acid species that is present. The buffer with the greatest amount of weak acid is 3.2 L of $0.4 \mathrm{M} \mathrm{HClO}, 0.5$ NaClO .
5. If one added 200 mL of 6 M HCl to 1 L of a buffer composed $4.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $6.6 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$, what would be the resulting pH ? The K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}.

1. 5.3
2. 4.9
3. 5.1
4. 4.7 Correct

Explanation: The general reaction that takes place is $\mathrm{A}^{-}+\mathrm{H}^{+} \quad \mathrm{HA}$. Initial amounts of each reactant are 6.6, 1.2 and 4.2 moles respectively. After the reaction goes to completion, the equilibrium concentrations are $5.4,0$ and 5.4 respectively. There is no need to calculate the final concentrations. For a buffer composed of a weak acid and its conjugate base,
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}\left(\mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}\right)=1.8 \times 10^{-5}(5.4 / 5.4)=1.8 \times 10^{-5}$
$\mathrm{pH}=4.7$
6. How many buffer regions and equivalence points would be visible on the titration curve of a weak tetraprotic acid?

1. 3,1
2. 3, 4
3. 1,4
4. 4,1
5. 4, 4 Correct

Explanation: Each ionizable proton will produce one buffer region and one equivalence point.
7. A 100 mL sample of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is titrated with 0.2 M NaOH . What is the pH of the solution after 100 mL of NaOH has been added? Phosphoric acid has $\mathrm{K}_{\mathrm{a} 1}=7.5 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.2 \times 10^{-8}$ and $\mathrm{K}_{\mathrm{a} 3}=$ 2.1×10^{-13}.

1. 4.10
2. 8.51
3. 4.67
4. 7.40
5. 9.94 Correct

Explanation: $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4} \times 100 \mathrm{~mL}=0.01$ moles $\mathrm{H}_{3} \mathrm{PO}_{4}$
$0.2 \mathrm{M} \mathrm{NaOH} \times 100 \mathrm{~mL}=0.02$ moles $\mathrm{OH}-$
Two equivalents of OH^{-}have been added, and the solution will be at the second equivalence point, composed primarily of the amphoteric species $\mathrm{HPO}_{4}{ }^{2-}$.
$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{ax}} \cdot \mathrm{K}_{\mathrm{ay}}\right)^{1 / 2}=\left(6.2 \times 10^{-8} .2 .1 \times 10^{-13}\right)^{1 / 2}=1.14 \times 10^{-10}$
$\mathrm{pH}=9.94$
8. What will be the pH at the first equivalence point of a titration of $0.2 \mathrm{M}_{2} \mathrm{SO}_{4}$ with 0.2 M NaOH ? The K_{a} for HSO_{4}^{-}is 2×10^{-2}.

1. 1.45 Correct
2. 1.35
3. 7.00
4. not enough information

Explanation: At its first equivalence point, the predominant species of this titration will be $\mathrm{HSO}_{4}{ }^{-}$.
Because the analyte and titrant are equimolar, the $\left[\mathrm{HSO}_{4}{ }^{-}\right]$will be half of C_{a}, or 0.1 M . This is not an amphoteric solution because $\mathrm{HSO}_{4}{ }^{-}$cannot function as a base. Because the K_{a} of HSO_{4}^{-}is so large, a full solution is required.

R	$\mathrm{HSO}_{4}{ }^{-}$		$\mathrm{H}+$	$\mathrm{SO}_{42}-$
I	0.1		0	0
C	-x		+x	+x
E	$0.1-\mathrm{x}$		x	x

$\mathrm{Ka}=2 \times 10^{-2}=(\mathrm{x})(\mathrm{x}) /(0.1-\mathrm{x})$
$\mathrm{x}^{2}+2 \times 10^{-2} \mathrm{x}-2 \times 10^{-3}=0$
$x=\left[\mathrm{H}^{+}\right]=0.0358$
$\mathrm{pH}=1.45$
9. All of the salts below have the same approximate molar solubility except for one. Which is it?

1. $\mathrm{TlBr} \quad \mathrm{K}_{\text {sp }}=4.00 \times 10^{-6}$
2. $\mathrm{PbI}_{2} \quad \mathrm{~K}_{\text {sp }}=7.47 \times 10^{-9}$
3. $\mathrm{AgSCN} \quad \mathrm{K}_{\text {sp }}=1.16 \times 10^{-12} \quad$ Correct
4. $\mathrm{CsIO}_{4} \quad \mathrm{~K}_{\mathrm{sp}}=5.16 \times 10^{-6}$

Explanation: Silver thiocyanate is a salt composed of one cation and one anion and thus its molar solubility is approximately equal to the square root of its K_{sp}. The best approximation is therefore $\left(10^{-}\right.$ $12)^{1 / 2}=10^{-6}$.
10. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$ at $25^{\circ} \mathrm{C}$ is 2.5×10^{-13}. What is its molar solubility at this temperature? (Hint: do the RICE diagram for this one.)

1. 3.2×10^{-4}
2. 4.0×10^{-5}
3. 6.3×10^{-5} Correct
4. 1.2×10^{-3}

Explanation: $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$ will dissolve into $\mathrm{Mg}^{2+} \mathrm{NH}_{4}^{+}$and $\mathrm{PO}_{4}{ }^{3-}$. Each will be produced in equal proportions and so $\mathrm{K}_{\mathrm{sp}}=\mathrm{x}^{3}=2.5 \times 10^{-13}$
11.2 What would be the molar solubility of $\mathrm{Sn}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\mathrm{sp}}=10^{-26}\right)$ in pH 13 NaOH solution?

1. 1×10^{-24}

Correct

2. 4×10^{-24}
3. 1×10^{-28}
4. 4×10^{-28}
5. not enough information

Explanation: [$\mathrm{OH}-\mathrm{]}=0.1 \mathrm{M}$
molar solubility $=\left(\mathrm{K}_{\mathrm{sp}} /\left[\mathrm{OH}^{-}\right]^{2}\right)=\left[10^{-26} /\left(10^{-1}\right)^{2}\right]=10^{-24}$
12. Consider the table below. Which anion would be the best for separating Pb^{2+} from Ca^{2+} ? Which would be the worst?

$\mathrm{K}_{\text {sp }}$ values	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{IO}_{3}{ }^{-}$
	Pb^{2+}	2.74×10^{-11}	3.3×10^{-14}	1.6×10^{-8}
Ca^{2+}	2.57×10^{-9}	8.7×10^{-9}	4.93×10^{-5}	6.44×10^{-13}

1. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-} \& \mathrm{SO}_{4}{ }^{2-}$
2. $\mathrm{IO}_{3}{ }^{-} \& \mathrm{SO}_{4}{ }^{2-}$
3. $\mathrm{CO}_{3}{ }^{2-} \& \mathrm{IO}_{3}^{-}$
4. $\mathrm{IO}_{3}{ }^{-} \& \mathrm{C}_{2} \mathrm{O}_{4}^{-} \quad$ Correct
5. $\mathrm{CO}_{3}{ }^{2-} \& \mathrm{C}_{2} \mathrm{O}_{4}^{-}$

Explanation: The $\mathrm{K}_{\text {sp }}$ values for $\mathrm{IO}_{3}{ }^{-}$are farthest apart and the values for $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$are closest together.
13. A student used the equation $\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right)^{1 / 2}$ to calculate $\left[\mathrm{H}^{+}\right]$and got a value of 0.4 M . The actual value was determined experimentally to be 0.35 M . Which of the following are possible explanations for this discrepancy?
I. K_{a} was too small
II. K_{a} was too large
III. C_{a} was too small

1. I only
2. II only

Correct

3. III only
4. I \& II
5. I \& III
6. II \& III
7. none

Explanation: If K_{a} had been too small, the equation $\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}\right)^{1 / 2}$ would result in a small number for the proton concentration. Likewise of C_{a} has been too small. If K_{a} was too large, however, our assumption that percent ionization is small is fals and we will overestimate the proton concentration just as the student did.
14. For a solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$, addition of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ will increase the concentration of which of the following species?
I. $\mathrm{H}_{3} \mathrm{PO}_{4}$
II. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
III. $\mathrm{PO}_{4}{ }^{3-}$

1. I only
2. II only
3. III only
4. I \& II
5. I \& III
6. II \& III
7. I, II and III Correct

Explanation: Because all of the variously protonated species of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are in equilibrium with each other, addition of any species will increase the concentration of all species.
15. Determine the pH of a 5 M solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$. Assume $\mathrm{H}_{3} \mathrm{PO}_{4}$ has a $\mathrm{pK}_{\mathrm{a} 1}$ of 2.1, a $\mathrm{pK}_{\mathrm{a} 2}$ of 7.2 and a $\mathrm{pK}_{\mathrm{a} 3}$ of 12.7.

1. 9.95 Correct
2. 4.65
3. 7.4
4. not enough information

Explanation: $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is amphiprotic, and the pH is conseequnetly the average of the pK_{a} values according to the equation $\mathrm{pH}=0.5\left(\mathrm{pK}_{\mathrm{ax}}+\mathrm{pK}_{\mathrm{ay}}\right)$.
16. Write a mass balance for carbon for a solution that initially contains $\mathrm{H}_{2} \mathrm{CO}_{3}$.

1. $\mathrm{C}_{\mathrm{H} 2 \mathrm{CO} 3}=\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
2. $\mathrm{C}_{\mathrm{H} 2 \mathrm{CO} 3}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
3. $\mathrm{C}_{\mathrm{H} 2 \mathrm{CO} 3}=\left[\mathrm{CO}_{2}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]$ Correct
4. $\mathrm{C}_{\mathrm{H} 2 \mathrm{CO} 3}=\left[\mathrm{CO}_{2}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$

Explanation: $\mathrm{H}_{2} \mathrm{CO}_{3}$ is in equilibrium with its deprotonated species HCO_{3}^{-}and $\mathrm{CO}_{3}{ }^{2-}$ and with its decomposition product CO_{2}.
17. How many equation are necessary to define a system initially composed of $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$?

1. 9 Correct
2. 8
3. 7
4. 5

Explanation: Species that will have an unknown concentration are $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right],\left[\mathrm{PO}_{4}{ }^{3-}\right],\left[\mathrm{HPO}_{4}{ }^{2-}\right]$, $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right],\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right],\left[\mathrm{NH}_{4}^{+}\right],\left[\mathrm{NH}_{3}\right]$ and $\left[\mathrm{Mg}^{2+}\right]$.
18. Which of the following would be equal to $\mathrm{K}_{\mathrm{a} 1}$ times $\mathrm{K}_{\mathrm{a} 2}$ for orthocarbonic acid, $\mathrm{H}_{4} \mathrm{CO}_{4}$?

1. $\left[\mathrm{H}_{2} \mathrm{CO}_{4}{ }^{2-}\right] \cdot\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{4} \mathrm{CO}_{4}\right]$
2. $\left[\mathrm{H}_{3} \mathrm{CO}_{4}^{-}\right] \cdot\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{4} \mathrm{CO}_{4}\right]$
3. $\left[\mathrm{H}_{2} \mathrm{CO}_{4}{ }^{2-}\right] \cdot\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{3} \mathrm{CO}_{4}^{-}\right]$
4. $\left[\mathrm{H}_{2} \mathrm{CO}_{4}{ }^{2-}\right] \cdot\left[\mathrm{H}^{+}\right] \cdot\left[\mathrm{H}_{3} \mathrm{CO}_{4}^{-}\right] /\left[\mathrm{H}_{4} \mathrm{CO}_{4}\right]$
5. $\left[\mathrm{H}_{2} \mathrm{CO}_{4}^{2-}\right] \cdot\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{H}_{4} \mathrm{CO}_{4}\right] \quad$ Correct

Explanation: $\mathrm{K}_{\mathrm{a} 1}=\left[\mathrm{H}_{3} \mathrm{CO}_{4}^{-}\right] \cdot\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{4} \mathrm{CO}_{4}\right]$
$\mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{H}_{2} \mathrm{CO}_{4}{ }^{2-}\right] \cdot\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{3} \mathrm{CO}_{4}{ }^{-}\right]$
$\mathrm{K}_{\mathrm{a} 1} \cdot \mathrm{~K}_{\mathrm{a} 2}=\left[\mathrm{H}_{2} \mathrm{CO}_{4}{ }^{2-}\right] \cdot\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{H}_{4} \mathrm{CO}_{4}\right]$
19. What would be the pH of a $2 \times 10^{-8} \mathrm{M}$ solution of $\mathrm{Ba}(\mathrm{OH})_{2}$?

1. 7.009

Correct
2. 7.019
3. 7.013
4. 7.004

Explanation: For a dilute strong base,
$\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{C}_{\mathrm{b}}\left[\mathrm{OH}^{-}\right]-\mathrm{K}_{\mathrm{w}}=0$
$\left[\mathrm{OH}^{-}\right]=x=\left(-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right) / 2 a$
$\mathrm{pOH}=6.991$
Alternatively, one could reason that the very low concentration of $\mathrm{Ba}(\mathrm{OH})_{2}, 2 \times 10^{-9} \mathrm{M}$, should result in a pH very close to, but still more than 7 .
20. What would be the $\left[\mathrm{H}^{+}\right],\left[\mathrm{HSO}_{4}^{-}\right]$and $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ in a 1 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

1. $1.02,0.98,0.02 \mathrm{M}$, respectively Correct
2. $0.00,2.00,1.00 \mathrm{M}$, respectively
3. 1.14. $0.86,0.14 \mathrm{M}$, respectively
4. $0.14,1.00,0.14 \mathrm{M}$, respectively

Explanation: Because $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid, the reaction $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$goes to completion. In this case, producing a $\left[\mathrm{H}^{+}\right.$] of 1 M . Because HSO_{4}^{-}is a weak acid we must solve for the proton concentration it contributes to the total.

R	$\mathrm{HSO}_{4}{ }^{-}$		H^{+}	$\mathrm{SO}_{4}{ }^{2-}$
I	1		1	0
C	-x		+x	+x
E	$1-\mathrm{x}$		$1+\mathrm{x}$	x

$K_{a}=2 \times 10^{-2}=(1+x)(x) /(1-x)$
$x^{2}+1.02 x-0.02=0$
$x=0.01924$
$\left[\mathrm{H}^{+}\right]=1.01924 \mathrm{M}$
$\left[\mathrm{HSO}_{4}{ }^{-}\right]=0.98076$
$\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.01924$
21. What would be the pH of a $4 \mathrm{mM} \mathrm{M} \mathrm{Na} 3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ solution (trisodium citrate)? Citric acid has $\mathrm{K}_{\mathrm{a} 1}=$ $7.1 \times 10^{-4}, \mathrm{~K}_{\mathrm{a} 2}=1.7 \times 10^{-5}$ and $\mathrm{K}_{\mathrm{a} 3}=4.0 \times 10^{-7}$.

1. 6.62
2. 5.00
3. 9.00

Correct

4. 7.38
5. 7.00

Explanation: Na^{+}is a spectator, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{3-}$ (citrate) is a weak base.
$40 \mathrm{mM}=0.004 \mathrm{M}$
$\mathrm{K}_{\mathrm{b} 3}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 3}=10^{-14} / 4.0 \times 10^{-7}=2.5 \times 10^{-8}$
$[\mathrm{OH}-]=\left(\mathrm{K}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}=\left(2.5 \times 10^{-8} \cdot 0.004\right)^{1 / 2}=10^{-5}$
$\mathrm{pH}=9$
22. Fully balance the reaction below in acid. How many protons are needed? How many water molecules? (Hint: this one is tricky - the water molecules and protons go on the same side.)
$\mathrm{N}_{2}(\mathrm{~g}) \quad 2 \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$

1. 3, 1
2. 6, 2 Correct
3. 2, 2
4. 8, 2
5. 8,1

Explanation: $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}-2 \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$
23. Fully Balance the reaction below in acid. What is the sum of the coefficients?

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})-\mathrm{ZnCl}_{2}(\mathrm{~s})+\mathrm{Mn}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{NH}_{3}(\mathrm{aq})
$$

1. 7
2. 12
3. 6
4. 10 Correct
5. 9

Explanation:
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})-\mathrm{ZnCl}_{2}(\mathrm{~s})+\mathrm{Mn}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
24. Which of the following statements is untrue concerning ranking the strength/weakness of oxidizing/reducing agents.

1. A reactant with a high reduction potential is a good reducing reagent. Correct
2. A product with a low reduction potential is a good reducing reagent.
3. A reactant with a low reduction potential is a poor oxidzing reagent.
4. A product wit a high reduction potential is a poor reducing agent.

Explanation: A reactant which is easily reduced is a god oxidizing agent.
25. If the two half reactions below were used to make a battery, what species would be consumed at the anode?

$$
\begin{array}{ll}
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{Pb}(\mathrm{~s}) & \mathrm{E}^{\circ}=-0.13 \\
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{Zn}(\mathrm{~s}) & \mathrm{E}^{\circ}=-0.76
\end{array}
$$

1. $\mathrm{Zn}(\mathrm{s})$ Correct
2. $\mathrm{Zn}^{2+}(\mathrm{aq})$
3. $\mathrm{Pb}(\mathrm{s})$
4. $\mathrm{Pb}^{2+}(\mathrm{aq})$

Explanation: A battery must have a positive standard cell potential and therefore the anodic reaction must consume $\mathrm{Zn}(\mathrm{s})$.
26. For a discharging battery, which of the following must be negative?
I. E° cell
II. anode
III. cathode

1. I only
2. II only Correct
3. III only
4. I \& II
5. I \& III
6. II \& III
7. none must be negative

Explanation: By definition and by convention, in an electrolytic cell the anode is attributed a negative sign.
27. What would be the E° cell of an electrolytic cell made from the following two half reactions?

$$
\begin{array}{ll}
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{Pb}(\mathrm{~s}) & \mathrm{E}^{\circ}=-0.13 \\
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{Zn}(\mathrm{~s}) & \mathrm{E}^{\circ}=-0.76
\end{array}
$$

1. -0.89
2. 0.89
3. 0.63 Correct
4. -0.63

Explanation: E° cell $=\mathrm{E}^{\circ}$ cathode $-\mathrm{E}^{\circ}$ anode $=-0.13-{ }^{-} 0.76=+0.63$
28. What is K for the reaction below at room temperature?

$$
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})-4 \mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\circ}=0.40 \mathrm{~V}
$$

1. 1.72×10^{-7}
2. 5.82×10^{6}
3. 8.70×10^{-28}
4. 1.15×10^{27} Correct

Explanation: $K=e^{\wedge}(n F e / R T)=e^{\wedge}[4(96,485)(0.40) /(8.314)(298)]=1.15 \times 10^{27}$
29. How many grams of solid silver (Ag) could be produce by electrolysing a solution of $\mathrm{Ag}+$ for 10 hours at a current of 0.02 amperes?

1. 0.80 g Correct
2. $2.24 \times 10^{-5} \mathrm{~g}$
3. $1.34 \times 10^{-3} \mathrm{~g}$
4. 0.016 g

Explanation: This is a 1 electron process.
10 hours $\times(3,600 \mathrm{~s} / \mathrm{hr})=36,000$ seconds
$n_{\text {product }}=\mathrm{I} \cdot \mathrm{t} / \mathrm{N}_{\mathrm{e}} \cdot \mathrm{F}=(0.02 \cdot 36,000) /(1 \cdot 96,485)=0.0074623$ moles Ag .
0.0074623 moles $\mathrm{Ag} \times(107.8682 \mathrm{~g} / 1 \mathrm{~mol})=0.80 \mathrm{~g}$
30. What $\left[\mathrm{Pb}^{2+}\right]$ and $\left[\mathrm{Sn}^{2+}\right.$] would be present at equilibrium in in a battery built from the two half reactions below?

$$
\begin{array}{ll}
\mathrm{Pb}^{2+}-\mathrm{Pb} & \mathrm{E}^{\circ}=-0.13 \\
\mathrm{Sn}^{2+}-\mathrm{Sn} & \mathrm{E}^{\circ}=-0.14
\end{array}
$$

1. $0.629 \mathrm{M}, 1.371 \mathrm{M} \quad$ Correct
2. $1.371 \mathrm{M}, 0.629 \mathrm{M}$
3. 0.808 M, 1.192 M
4. 1.192 M, 0.808 M

Explanation: $\mathrm{Pb}^{2+}+\mathrm{Sn}-\mathrm{Pb}+\mathrm{Sn}^{2+} \quad \mathrm{E}^{\circ}$ cell $=+0.01$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\left(0.05916 / \mathrm{N}_{\mathrm{e}}\right) \log \mathrm{Q}$
$0=0.01-(0.05916 / 2) \log \left(\left[\mathrm{Sn}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]\right)$
$\log (1+x / 1-x)=0.338$
$(1+x / 1-x)=2.178$
$1+x=2.178-2.178 x$
$3.178 x=1.178$
$x=0.371$

