1. What would be the pH of a solution prepared by dissolving 120.1 g of CH_3COOH and 82 g of

NaCH₃COO in 1 L of water? Acetic acid has a K_a of 1.8×10^{-5} .

- 1. 5.05
- 2.4.78
- 3.4.12

4. 4.44 Correct

Explanation:

- 120.1 g CH₃COOH x (1 mol / 60.05 g) = 2 mol CH₃COOH
- 82 g of NaCH₃COO x (1 mol / 82.03 g) = 1 mol NaCH₃COO
- For a buffer composed of a weak acid and its conjugate base,

 $[H^+] = K_a(C_a/C_b) = 1.8 \times 10^{-5}(2/1) = 3.6 \times 10^{-5}$

Note, it is adequate to use the moles of HA and A^- in place of their final concentrations.

- 2. Which of the following pairs of solutions would **not** result in a buffer upon mixing?
 - 1. 100 mL of 10 mM NaOH & 80 mL of 20 mM NH_4Cl
 - 2. 20 mL of 0.3 M NaF & 12 mL of 0.4 M HCl
 - 3. 0.4 L of 10 mM HClO_3 & 0.5 L of 8 mM $C_6H_5NH_2$ Correct
 - 4. 2 L of 1.35 M Ba(OH)₂ & 3 L of 2 M CHOOH

Explanation: A buffer prepared by a neutralization reaction requires a weak acid mixed with less strong base or a weak base mixed with less strong acid. The only pair of solutions which fails to satisfy this constraint is 0.4 L of 10 mM HClO3 and 0.5 L of 8 mM $C_6H_5NH_2$.

3 Consider the following acids and their provided pK_as. Rank them in terms of increasing strength of their conjugate bases.

CH₃COOH
$$pK_a = 4.75$$

CH₃CHOHCOOH $pK_a = 3.85$
CHOOH $pK_a = 3.74$
CH₃CH₂COOH $pK_a = 4.88$

1. CHOOH < CH₃CHOHCOOH < CH₃COOH < CH₃CH₂COOH Correct

- 2. $CH_3CH_2COOH < CHOOH < CH_3CHOHCOOH < CH_3COOH$
- 3. $CH_3COOH < CH_3CH_2COOH < CHOOH < CH_3CHOHCOOH$
- 4. CH₃CHOHCOOH < CH₃COOH < CH₃CH₂COOH < CHOOH

Explanation: The strength of an acid's conjugate base is directly proportional to the pK_a of the acid.

4 Which of the following buffers could absorb the greatest amount of strong base before being exhausted?

- 1. 45 mL of 2 mM N₂H₅Cl, 4 mM N₂H₄
- 2. 3.2 L of 0.4 M HClO, 0.5 NaClO Correct
- 3. 2 L of 9 mM HF, 7 mM NaF
- 4. 0.3 L of 0.4 M NH₄Cl, 0.6 M NH₃
- 5. 20 mL of 5 M CHOOH, 4 M NaCHOO

Explanation: Any strong base added to a buffer will react with and be neutralized by the weak acid species that is present. The buffer with the greatest amount of weak acid is 3.2 L of 0.4 M HCIO, 0.5 NaCIO.

5. If one added 200 mL of 6 M HCl to 1 L of a buffer composed 4.2 M CH₃COOH and 6.6 M NaCH₃COO,

what would be the resulting pH? The K_a of CH₃COOH is 1.8×10^{-5} .

2. 4.9

3.5.1

4. 4.7 **Correct**

Explanation: The general reaction that takes place is $A^- + H^+$ HA. Initial amounts of each reactant are 6.6, 1.2 and 4.2 moles respectively. After the reaction goes to completion, the equilibrium concentrations are 5.4, 0 and 5.4 respectively. There is no need to calculate the final concentrations. For a buffer composed of a weak acid and its conjugate base,

 $[H^+] = K_a(C_a/C_b) = 1.8 \times 10^{-5}(5.4/5.4) = 1.8 \times 10^{-5}$ pH = 4.7

6. How many buffer regions and equivalence points would be visible on the titration curve of a weak tetraprotic acid?

1.3,1

2.3,4

3.1,4

4.4,1

5. 4, 4 Correct

Explanation: Each ionizable proton will produce one buffer region and one equivalence point.

7. A 100 mL sample of 0.1 M H₃PO₄ is titrated with 0.2 M NaOH. What is the pH of the solution after 100 mL of NaOH has been added? Phosphoric acid has $K_{a1} = 7.5 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-8}$ and $K_{a3} =$

2.1 x 10⁻¹³.

- 1.4.10
- 2.8.51
- 3.4.67
- 4.7.40
- 5. 9.94 Correct

Explanation: 0.1 M H₃PO₄ x 100 mL = 0.01 moles H₃PO₄

0.2 M NaOH x 100 mL = 0.02 moles OH

Two equivalents of OH⁻ have been added, and the solution will be at the second equivalence point, composed primarily of the amphoteric species HPO_4^{2-} .

 $[H^+] = (K_{ax} \cdot K_{ay})^{1/2} = (6.2 \times 10^{-8} \cdot 2.1 \times 10^{-13})^{1/2} = 1.14 \times 10^{-10}$ pH = 9.94

8. What will be the pH at the first equivalence point of a titration of 0.2 M H_2SO_4 with 0.2 M NaOH? The K_a for HSO_4^- is 2 x 10^{-2} .

1. 1.45 Correct

2.1.35

- 3.7.00
- 4. not enough information

Explanation: At its first equivalence point, the predominant species of this titration will be HSO₄⁻.

Because the analyte and titrant are equimolar, the $[HSO_4^-]$ will be half of C_a , or 0.1 M. This is not an amphoteric solution because HSO_4^- cannot function as a base. Because the K_a of HSO_4^- is so large, a full solution is required.

R	HSO4-	H+	S0 ₄₂₋
I	0.1	0	0
С	- x	+ x	+ x
E	0.1 - x	х	х

Ka = $2 \times 10^{-2} = (x)(x)/(0.1 - x)$ x² + $2 \times 10^{-2}x - 2 \times 10^{-3} = 0$ x = [H⁺] = 0.0358 pH = 1.45

- 9. All of the salts below have the same approximate molar solubility except for one. Which is it?
 - 1. TIBr $K_{sp} = 4.00 \times 10^{-6}$
 - 2. PbI_2 K_{sp} = 7.47 x 10⁻⁹
 - 3. AgSCN $K_{sp} = 1.16 \times 10^{-12}$ Correct
 - 4. $CsIO_4$ K_{sp} = 5.16 x 10⁻⁶

Explanation: Silver thiocyanate is a salt composed of one cation and one anion and thus its molar solubility is approximately equal to the square root of its K_{sp} . The best approximation is therefore $(10^{-12})^{1/2} = 10^{-6}$.

10. The K_{sp} of MgNH₄PO₄ at 25 °C is 2.5 x 10⁻¹³. What is its molar solubility at this temperature? (Hint: do the RICE diagram for this one.)

- 1. 3.2 x 10⁻⁴
- 2. 4.0 x 10⁻⁵
- 3. 6.3 x 10⁻⁵ **Correct**
- 4. 1.2 x 10⁻³

Explanation: MgNH₄PO₄ will dissolve into Mg²⁺ NH₄⁺ and PO₄³⁻. Each will be produced in equal proportions and so $K_{sp} = x^3 = 2.5 \times 10^{-13}$

11.2 What would be the molar solubility of $Sn(OH)_2$ (K_{sp} = 10⁻²⁶) in pH 13 NaOH solution?

- 1. 1 x 10⁻²⁴ Correct
- 2. 4 x 10⁻²⁴
- 3. 1 x 10⁻²⁸
- 4. 4 x 10⁻²⁸
- 5. not enough information
- Explanation: [OH-] = 0.1 M

molar solubility = $(K_{sp}/[OH^{-}]^{2}) = [10^{-26}/(10^{-1})^{2}] = 10^{-24}$

12. Consider the table below.	Which anion w	would be the b	pest for separating	Pb ²⁺ from Ca ²⁺ ? Which
would be the worst?				

K _{sp} values	C ₂ O ₄ ⁻	CO3 ²⁻	504 ²⁻	IO3-
Pb ²⁺	2.74 x 10 ⁻¹¹	3.3 x 10 ⁻¹⁴	1.6 x 10 ⁻⁸	1.2 x 10 ⁻¹³
Ca ²⁺	2.57 x 10 ⁻⁹	8.7 x 10 ⁻⁹	4.93 x 10 ⁻⁵	6.44 x 10 ⁻⁷

1. C₂O₄⁻ & SO₄²⁻

2. IO₃⁻ & SO₄²⁻

4. $IO_3^- \& C_2O_4^-$ Correct

5.
$$CO_3^{2-} \& C_2O_4^{-}$$

Explanation: The K_{sp} values for IO_3^- are farthest apart and the values for $C_2O_4^-$ are closest together.

13. A student used the equation $[H^+] = (K_a \cdot C_a)^{1/2}$ to calculate $[H^+]$ and got a value of 0.4 M. The actual value was determined experimentally to be 0.35 M. Which of the following are possible explanations for this discrepancy?

- I. K_a was too small
- II. K_a was too large
- III. C_a was too small
- 1. I only
- 2. II only Correct

- 3. III only 4. I & II
- 5. I & III
- 6. II & III
- 7. none

Explanation: If K_a had been too small, the equation $[H^+] = (K_a \cdot C_a)^{1/2}$ would result in a small number for the proton concentration. Likewise of C_a has been too small. If K_a was too large, however, our assumption that percent ionization is small is fals and we will overestimate the proton concentration – just as the student did.

14. For a solution of H_3PO_4 , addition of Na_2HPO_4 will increase the concentration of which of the following species?

I. H₃PO₄ II. H₂PO₄⁻ III. PO₄³⁻

- 1. I only
- 2. II only
- 3. III only
- 4. I & II
- 5. I & III
- 6. II & III
- 7. I, II and III **Correct** Explanation: Because all of the variously protonated species of H_3PO_4 are in equilibrium with each

other, addition of any species will increase the concentration of all species.

15. Determine the pH of a 5 M solution of Na_2HPO_4 . Assume H_3PO_4 has a pK_{a1} of 2.1, a pK_{a2} of 7.2 and a pK_{a3} of 12.7.

- 1. 9.95 **Correct**
- 2. 4.65
- 3. 7.4
- 4. not enough information

Explanation: $H_2PO_4^-$ is amphiprotic, and the pH is conseequnetly the average of the pK_a values according to the equation pH = $0.5(pK_{ax} + pK_{ay})$.

16. Write a mass balance for carbon for a solution that initially contains H_2CO_3 .

1. $C_{H2CO3} = [HCO_3^{-}] + [CO_3^{2-}]$

- 2. $C_{H2CO3} = [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$
- 3. $C_{H2CO3} = [CO_2] + [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$ Correct
- 4. $C_{H2CO3} = [CO_2] + [H_2CO_3]$

Explanation: H_2CO_3 is in equilibrium with its deprotonated species HCO_3^- and CO_3^{2-} and with its decomposition product CO_2 .

17. How many equation are necessary to define a system initially composed of MgNH₄PO₄?

- 1.9 Correct
- 2.8
- 3. 7
- 4.5

Explanation: Species that will have an unknown concentration are $[H^+]$, $[OH^-]$, $[PO_4^{3^-}]$, $[HPO_4^{2^-}]$, $[H_2PO_4^{-}]$, $[H_3PO_4]$, $[NH_4^+]$, $[NH_3]$ and $[Mg^{2^+}]$.

18. Which of the following would be equal to K_{a1} times K_{a2} for orthocarbonic acid, H_4CO_4 ?

- 1. [H₂CO₄²⁻]·[H⁺]/[H₄CO₄]
- 2. [H₃CO₄⁻]·[H⁺]/[H₄CO₄]

3. $[H_2CO_4^{2^-}] \cdot [H^+]/[H_3CO_4^-]$ 4. $[H_2CO_4^{2^-}] \cdot [H^+] \cdot [H_3CO_4^-]/[H_4CO_4]$ 5. $[H_2CO_4^{2^-}] \cdot [H^+]^2/[H_4CO_4]$ Correct Explanation: $K_{a1} = [H_3CO_4^-] \cdot [H^+]/[H_4CO_4]$ $K_{a2} = [H_2CO_4^{2^-}] \cdot [H^+]/[H_3CO_4^-]$ $K_{a1} \cdot K_{a2} = [H_2CO_4^{2^-}] \cdot [H^+]^2/[H_4CO_4]$

19. What would be the pH of a 2 x 10^{-8} M solution of Ba(OH)₂?

- 1. 7.009 Correct
- 2.7.019
- 3.7.013
- 4.7.004

Explanation: For a dilute strong base,

 $[OH^{-}]^{2} - C_{b}[OH^{-}] - K_{w} = 0$

$$[OH^{-}] = x = (-b \pm \sqrt{b^{2} - 4ac}) / 2a$$

pOH = 6.991

Alternatively, one could reason that the very low concentration of $Ba(OH)_2$, 2 x 10⁻⁹ M, should result in a pH very close to, but still more than 7.

20. What would be the $[H^+]$, $[HSO_4^-]$ and $[SO_4^{2-}]$ in a 1 M solution of H_2SO_4 ?

- 1. 1.02, 0.98, 0.02 M, respectively Correct
- 2. 0.00, 2.00, 1.00 M, respectively
- 3. 1.14. 0.86, 0.14 M, respectively
- 4. 0.14, 1.00, 0.14 M, respectively

Explanation: Because H_2SO_4 is a strong acid, the reaction $H_2SO_4 \rightarrow H^+ + HSO_4^-$ goes to completion. In this case, producing a $[H^+]$ of 1 M. Because HSO_4^- is a weak acid we must solve for the proton concentration it contributes to the total.

R	HSO4⁻	Н+	s04 ²⁻
I	1	1	0
С	- x	+ x	+ x
E	1 - x	1 + x	х

 $K_{a} = 2 \times 10^{-2} = (1 + x)(x)/(1 - x)$ $x^{2} + 1.02x - 0.02 = 0$ x = 0.01924 $[H^{+}] = 1.01924 M$ $[HSO_{4}^{-}] = 0.98076$ $[SO_{4}^{2-}] = 0.01924$

21. What would be the pH of a 4 mM MNa₃C₆H₅O₇ solution (trisodium citrate)? Citric acid has $K_{a1} = 7.1 \times 10^{-4}$, $K_{a2} = 1.7 \times 10^{-5}$ and $K_{a3} = 4.0 \times 10^{-7}$.

- 1.6.62
- 2.5.00
- 3. 9.00 **Correct**
- 4. 7.38
- 5.7.00

Explanation: Na⁺ is a spectator, and $C_6H_5O_7^{3-}$ (citrate) is a weak base.

40 mM = 0.004 M

 $K_{b3} = K_w/K_{a3} = 10^{-14}/4.0 \times 10^{-7} = 2.5 \times 10^{-8}$

 $[OH-] = (K_b \cdot C_b)^{1/2} = (2.5 \times 10^{-8} \cdot 0.004)^{1/2} = 10^{-5}$ pH = 9

22. Fully balance the reaction below in acid. How many protons are needed? How many water molecules? (Hint: this one is tricky - the water molecules and protons go on the same side.)

```
N_2(g) = 2 NH_4OH(aq)
```

1. 3, 1 2. 6, 2 **Correct** 3. 2, 2 4. 8, 2

5.8,1

Explanation: $N_2(g) + 2 H_2O + 6H^+ + 6 e^- \rightarrow 2 NH_4OH(aq)$

23. Fully Balance the reaction below in acid. What is the sum of the coefficients?

 $Zn(s) + MnO_2(s) + NH_4Cl(aq) \rightarrow ZnCl_2(s) + Mn_2O_3(s) + NH_3(aq)$

- 1.7
- 2.12
- 3.6
- 4.10 Correct

5.9

Explanation:

 $Zn(s) + 2 MnO_2(s) + 2 NH_4Cl(aq) \rightarrow ZnCl_2(s) + Mn_2O_3(s) + 2 NH_3(aq) + H_2O(l)$

24. Which of the following statements is untrue concerning ranking the strength/weakness of oxidizing/reducing agents.

- 1. A reactant with a high reduction potential is a good reducing reagent. Correct
- 2. A product with a low reduction potential is a good reducing reagent.
- 3. A reactant with a low reduction potential is a poor oxidzing reagent.
- 4. A product wit a high reduction potential is a poor reducing agent.

Explanation: A reactant which is easily reduced is a god oxidizing agent.

25. If the two half reactions below were used to make a battery, what species would be consumed at the anode?

```
Pb^{2+}(aq) + 2 e^{-} \rightarrow Pb(s) E^{\circ} = -0.13
Zn^{2+}(aq) + 2 e^{-} \rightarrow Zn(s) E^{\circ} = -0.76
1. Zn(s) Correct
```

- 2. $Zn^{2+}(aq)$
- 3. Pb(s)
- 4. $Pb^{2+}(aq)$

Explanation: A battery must have a positive standard cell potential and therefore the anodic reaction must consume Zn(s).

26. For a discharging battery, which of the following must be negative?

I. E°cell

- II. anode
- III. cathode
- 1. I only
- 2. II only Correct
- 3. III only
- 4. I & II
- 5. I & III
- 6. II & III
- 7. none must be negative

Explanation: By definition and by convention, in an electrolytic cell the anode is attributed a negative sign.

27. What would be the E°_{cell} of an electrolytic cell made from the following two half reactions?

```
Pb<sup>2+</sup>(aq) + 2 e<sup>-</sup> → Pb(s) E° = -0.13

Zn<sup>2+</sup>(aq) + 2 e<sup>-</sup> → Zn(s) E° = -0.76

1. -0.89

2. 0.89

3. 0.63 Correct

4. -0.63

Explanation: E°<sub>cell</sub> = E°<sub>cathode</sub> - E°<sub>anode</sub> = -0.13 - <sup>-</sup>0.76 = +0.63
```

28. What is K for the reaction below at room temperature?

 $O_2(g) + 2H_2O(I) \rightarrow 4OH^-(aq)$ E° = 0.40 V 1. 1.72 x 10⁻⁷ 2. 5.82 x 10⁶ 3. 8.70 x 10⁻²⁸ 4. 1.15 x 10²⁷ Correct Explanation: K = e^(nFe/RT) = e^[4(96,485)(0.40)/(8.314)(298)] = 1.15 x 10²⁷

29. How many grams of solid silver (Ag) could be produce by electrolysing a solution of Ag+ for 10 hours at a current of 0.02 amperes?

1. 0.80 g **Correct** 2. 2.24 x 10^{-5} g 3. 1.34 x 10^{-3} g 4. 0.016 g Explanation: This is a 1 electron process. 10 hours x (3,600 s / hr) = 36,000 seconds n_{product} = I·t/N_e·F = (0.02·36,000)/(1·96,485) = 0.0074623 moles Ag. 0.0074623 moles Ag x (107.8682 g/ 1 mol) = 0.80 g

30. What $[Pb^{2+}]$ and $[Sn^{2+}]$ would be present at equilibrium in in a battery built from the two half reactions below?