Spring 2009 CH302 Practice Exam 3

Dear students,
For work related to organic chemistry structures and nomenclature, the following link is a useful molecule drawing tool that will tell you the preferred IUPAC name for any molecule you can think of: http://www.chemaxon.com/marvin/sketch/index.jsp

And, it is kind of fun to play with. I used it to make the figures for problems 26-28. Cheers,
Travis

1. Consider the reaction below:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Which of the following is an incorrect expression of the rate?
2. rate $=\left(\Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / 6 \cdot \Delta t\right)$
3. rate $=-\left(\Delta\left[\mathrm{O}_{2}\right] / 12 \cdot \Delta \mathrm{t}\right)$
4. rate $=\left(\Delta\left[\mathrm{CO}_{2}\right] / 6 \cdot \Delta \mathrm{t}\right)$
5. rate $=-\left(\Delta\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right] / \Delta \mathrm{t}\right)$
6. The overall reaction

$$
\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrNO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Has an empirically determined rate law, rate $=k \cdot\left[\mathrm{NO}_{2}\right]^{2} \cdot\left[\mathrm{Br}_{2}\right] \cdot\left[\mathrm{O}_{2}\right]^{-1}$.
If $\mathrm{k}=3.0 \times 10^{4} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1},\left[\mathrm{NO}_{2}\right]=0.01 \mathrm{M},\left[\mathrm{Br}_{2}\right]=0.02 \mathrm{M}$ and $\left[\mathrm{O}_{2}\right]=0.01 \mathrm{M}$, what is the observed rate?

1. $0.3 \mathrm{M} \cdot \mathrm{s}^{-1}$
2. $0.0006 \mathrm{M} \cdot \mathrm{s}^{-1}$
3. $300 \mathrm{M} \cdot \mathrm{s}^{-1}$
4. $6.0 \mathrm{M} \cdot \mathrm{s}^{-1}$
5. Consider the rate constants below:
I. $k=7.45 \times 10-2 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
II. $k=1.79 \times 10-2 \mathrm{M}^{3} \cdot \mathrm{~s}^{-1}$
III. $\mathrm{k}=4.77 \times 10-2 \mathrm{M}^{1} \cdot \mathrm{~s}^{-1}$

Which response arranges them from lowest to highest order.

1. III, II, I
2. I, II, III
3. I, III, II
4. II, I, III
5. II, III, I
6. III, I, II
7. Consider the data below:

Experiment number	$[A]$ M	$[B]$ M	$[C]$ M	$[D]$ M	initial rate $M \cdot s^{-1}$
1	0.42	0.5	1.12	2.01	1.06×10^{-6}
2	0.84	0.5	1.12	2.01	2.12×10^{-6}
3	0.75	0.25	1.12	2.01	1.89×10^{-6}
4	1.23	0.93	0.97	2.01	3.58×10^{-6}
5	0.21	1.35	0.56	5.53	8.02×10^{-6}

What is the overall order of this reaction?

1. 1
2. 2
3. 3
4. 4
5. Consider the elementary reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If $\mathrm{k}=9.7 \times 10^{6} \mathrm{M}^{-1} \cdot \mathrm{hr}^{-1}$, and there is initially $0.014 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$, how long will it take for the $\mathrm{H}_{2} \mathrm{O}$ concentration to reach 7.95 M ?
6. 36 ms
7. 22 ms
8. 13 ms
9. 5 ms
10. Consider the elementary reaction:

$$
\mathrm{SO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})
$$

If $k=1.21 \times 10^{-4} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$, and there is initially 2.3 M of SO_{2}, what is the half life of the reaction?

1. 1.0 hr
2. 1.6 hr
3. 2.6 hr
4. not enough information
5. A student studying the kinetics of a reaction finds that the natural \log of some concentration data produces a straight line when plotted as a function of time. What is the order of the reaction?
6. Oth order
7. 1st order
8. 2nd order
9. not enough information
10. Collision theory predicts that
11. raising a system's temperature will accelerate any reactions.
12. reaction intermediates are short-lived.
13. activation energy has no effect on reaction rate.
14. all collisions are productive.
15. Transition state theory assumes that formation of the transition state is (reversible/irreversible) and (does/doesn't) require a minimum amount of energy.
16. irreversible, does
17. reversible, doesn't
18. reversible, does
19. reversible, doesn't
20. What is the activation energy for a reaction that has a rate constant (k) of magnitude 4.03×10^{5} and a pre-exponential factor (A) of 10^{6} ?
21. $2.25 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
22. $2.25 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$
23. $2,251 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
24. not enough information
25. What is a reaction's activation energy of raising the temperature from $100^{\circ} \mathrm{C}$ to $1000{ }^{\circ} \mathrm{C}$ causes the rate to increase by a factor of 5 ?
26. $\mathrm{E}_{\mathrm{a}}=1.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
27. $\mathrm{E}_{\mathrm{a}}=1.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
28. $\mathrm{E}_{\mathrm{a}}=3.9 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
29. $E_{a}=7.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
30. Consider the reaction mechanism below:
step 1: $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \bullet+\mathrm{O} \cdot$
step 2: $\mathrm{CO}+\mathrm{O} \bullet \rightarrow \mathrm{CO}_{2} \bullet$
step 3: $\mathrm{CO}_{2} \bullet+\mathrm{H}_{2} \mathrm{O} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
overall: $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{CO} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Which step must be the slow step if the reaction is experimentally determined to be 2nd order overall?
31. step 1
32. step 2
33. step 3
34. Any step.
35. Consider the reaction mechanism below:
step 1: $\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2}$
step 2: $\mathrm{ClO}+\mathrm{O}_{3} \rightarrow \mathrm{Cl}+2 \mathrm{O}_{2}$
overall: $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
Which species is a catalyst and which is an intermediate, respectively?
36. $\mathrm{Cl}, \mathrm{ClO}$
37. $\mathrm{ClO}, \mathrm{Cl}$
38. $\mathrm{O}_{3}, \mathrm{O}_{2}$
39. $\mathrm{O}_{2}, \mathrm{O}_{3}$
40. Consider the diagram below:

Reaction Cocrdingo

How many steps does this reaction have? Which reverse step is the slowest?

1. $1, \mathrm{P} \rightarrow \mathrm{TS}_{2}$
2. 1, $\mathrm{P} \rightarrow \mathrm{I}$
3. $2, \mathrm{P} \rightarrow \mathrm{I}$
4. 3, I \rightarrow SM
5. $2, \mathrm{I} \rightarrow \mathrm{TS}_{1}$
6. The (chlorine radical/catalytic converter) is a heterogeneous catalyst and (chlorine radical/catalytic converter) acts on only one substrate.
7. catalytic converter, chlorine radical
8. catalytic converter, catalytic converter
9. chlorine radical, catalytic converter
10. chlorine radical, chlorine radical
11. Consider the balanced reaction below:

$$
2 \mathrm{X}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{XOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The species ' X ' would be which of the following?

1. an alkali metal
2. an alkaline earth metal
3. a halogen
4. a chalcogen
5. Which of the following is not true of alkaline earth metals?
6. React with halogens to form salts
7. Tend to form a +2 charge
8. Somewhat reactive toward water
9. Gain electrons to achieve noble gas configuration
10. Have 2 electrons in their highest energy shell
11. Which member of the boron family is a deadly poison
12. Boron (B)
13. Aluminum (AI)
14. Gallium (Ga)
15. Indium (In)
16. Thallium (TI)
17. The nitrogen group contains (1/2) non-metal(s), (1/2) metalloid(s) and (1/2) metal(s). Do not consider the synthetic superheavy element Ununpentium (Uup) in arriving at your answer.
18. 2, 1, 2
19. 1, 2, 2
20. $2,2,1$
21. $1,1,1$
22. 2, 2, 2
23. Which member of the carbon family is most abundant in Earth's crust?
24. Carbon (C)
25. Silicon (Si)
26. Germanium (Ge)
27. Tin (Sn)
28. Lead (Pb)
29. Which of the following statements is not true of the oxygen family?
30. They often have an oxidation number of -2
31. Are good reducing agents
32. Contains elements crucial to life
33. Are also called chalcogens
34. Which of the following is not true of the halogen family?
35. Its members are often found in their pure forms.
36. It contains the heaviest element required for life.
37. It contains most of the diatomic elements.
38. Its members are good oxidizing agents.
39. Its name mean salt-forming.
40. Alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ is produced in which of the following processes?
41. Bayer process
42. Contact process
43. Hall process
44. Claus process
45. Which of the following gemstones is/are derived from aluminum oxides?
I. Diamond
II. Sapphire
III. Ruby
46. I
47. II
48. III
49. I and II
50. I and III
51. II and III
52. none
53. How many structural isomers would a hydrocarbon of formula $\mathrm{C}_{5} \mathrm{H}_{10}$ have? (Hint: this is an unsaturated hydrocarbon, so its isomers either have one double bond or are cyclical)
54. 8 isomers
55. 9 isomers
56. 10 isomers
57. 11 isomers
58. 12 isomers
59. What would be the name of the following molecule?

60. but-1-en-2-oic acid
61. but-1-en-2-one
62. but-3-en-2-one
63. prop-3-en-2-al
64. prop-1-en-2-oic acid
65. What would be the name of the following molecule?

66. 1,1-diaminopropan-2-one
67. 3,3-diaminopropan-2-one
68. 1-amino-2-oxopropylamine
69. 2-oxopropanimidamide
70. 2-oxopropanamineamine
71. Condensation polymerization reactions between the following two species produces nylon. What type of bond is formed and what is produced aside from the polymer itself?

72. Ester bond, H+
73. Ester bond, nothing
74. Ether bond, $\mathrm{H}+$
75. Amide bond, $\mathrm{NH}_{2} \mathrm{OH}$
76. Ether bond, water
77. Amide bond, water
78. Which of the following biopolymers is/are formed by condensation reactions?
I. DNA
II. Protein
III. Starch
79. I
80. II
81. III
82. I and II
83. I and III
84. II and III
85. I, II and III
30.3 Which two monosaccharides are found in table suagr?
86. glucose and fructose
87. galactose and glucose
88. galactose and fructose
89. rhamnose and glucose
