		œ	-		СЛ	~		ω	10		-	1.2		1			ω			-	1
(223)	Ţ	7	32.9054	Cs	ŭ	85.4678	Rb	7	39.0983	ㅈ	9	22.9898	Na	1	6.941	⊑.		1.0079	т		- 1
(226)	Ra	88	137.327	Ba	56	87.62	လို	38	40.078	Ca	20	24.3050	Mg	12	9.0122	Be	4	2	2A		
(227)	Ac	68	138.9055	La	57	88.9059	~	39	44.9559	Sc	21	3	а В								
(261)	Ŗ	104	178.49	Ť	72	91.224	Ŋ	40	47.88	⊒	22	4	4B								Peri
(262)	Db	105	180.9479	Ta	73	92.9064	٨b	41	50.9415	<	23	Б	5B								odic
(263)	gS	106	183.85	٤	74	95.94	Mo	42	51.9961	ç	24	6	6B								Tal
(262)	Bh	107	186.207	Re	75	(98)	7	43	54.9380	Mn	25	7	7B								ble
(265)	Hs	108	190.2	S	76	101.07	Ru	44	55.847	Fe	26	8	7								of th
(266)	Mt	109	192.22	r	77	102.9055	Rh	45	58.9332	င္ပ	27	9	– 8В –								e El
			195.08	Pţ	82	106.42	Pd	46	58.69	<u>Z</u>	28	10									eme
			196.9665	Au	62	107.8682	Ag	47	63.546	Сп	29	11	1B								ints
			200.59	Hg	08	112.411	S	48	65.39	Zn	30	12	2B								
			204.3833	Ⅎ	81	114.82	ln	49	69.723	Ga	31	26.9815	A	13	10.811	B	5	13	ЗA		
			207.2	Pb	82	118.710	Sn	50	72.61	Ge	32	28.0855	<u>N</u>	14	12.011	റ	6	14	4A		
			208.9804	<u>D</u>	83	121.75	Sp	51	74.9216	As	33	30.9738	ס	15	14.0067	z	7	15	5A		
			(209)	Po	84	127.60	Te	52	78.96	Se	34	32.066	ഗ	16	15.9994	0	8	16	6A		
			(210)	At	85	126.9045	_	53	79.904	Βŗ	35	35.4527	<u>0</u>	17	18.9984	П	9	17	7A		
			(222)	Rn	98	131.39	Xe	54	83.80	Ţ	36	39.948	Ar	18	20.1797	Ne	10	4.0026	He	N	-18 A8

n 63 64 Eu Gd	n Eu Gd Tb	n Eu Gd Tb Dy	n Eu Gd Tb Dy Ho	n Eu Gd Tb Dy Ho Er	ח <mark>63 64 65 66 67 68 69</mark> בע Gd Tb Dy Ho Er Tm	n Eu Gd Tb Dy Ho Er Tm Yb
64	Gd ⁶⁵	64 65 66	64 65 66 67	64 65 66 67 68	64 65 66 67 68 69	64 65 66 67 68 69 70 Gd Tb Dy Ho Er Tm Yb
Gd	Gd Tb	Gd Tb Dy	Gd Tb Dy Ho	Gd Tb Dy Ho Er	Gd Tb Dy Ho Er Tm	
	65	65 66	65 66 67	65 66 67 68	65 66 67 68 69	65 66 67 68 69 70
	Tb	Tb Dy	Tb Dy Ho	Tb Dy Ho Er	Tb Dy Ho Er Tm	Tb Dy Ho Er Tm Yb

This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

Lyon E3 07

18:01, general, multiple choice, $> 1 \min$, fixed. 001

Like all equilibrium constants, $K_{\rm w}$ varies somewhat with temperature.

Given that K_w is 4.95×10^{-13} at some temperature, what is the pH of a neutral aqueous solution at that temperature?

1. 6.15 **correct**

- **2.** 6.06
- **3.** 6.22
- **4.** 6.34

5. 6.43

Explanation:

DAL 02 0303

18:01, general, multiple choice, $< 1 \min$, fixed. 002

Which of the following statements is true with respect to the autodissociation of water when sipping a glass of ice water?

I. pH = pOH = 7II. pH < 7

- III. pH = pOH
- IV. pH > 7

1. I and III only

- 2. III and IV only correct
- **3.** II only
- 4. IV only

Explanation:

Since water autodissociates, $[H^+] = [OH^-]$. For any given temperature, the pH of pure water is defined as neutral and pH = pOH. At 25° C neutral pH = 7. $K_{\rm a}$ will be smaller than 1×10^{-7} at 0°C because water autodissociates less than 25°C. pH will therefore be greater than 7 at 0°C.

ChemPrin3e T10 19

18:99, general, multiple choice, < 1 min, fixed. 003

What is the pH of a 0.005 M aqueous solution of calcium hydroxide?

11.40
2.00
12.00 correct
12.70
11.70

Explanation:

Msci 18 0408

18:01, general, multiple choice, $> 1 \min$, fixed. 004

0.50 moles of HCN are added to a liter of water.

What is the pH? (K_a of HCN is 4.0×10^{-10})

4.69
 5.35
 4.85 correct
 9.40
 4.35

Explanation:

HCN is *not* a strong acid so $[H^+]$ will *not* be 0.5 M. To figure it out, we must look at the $K_{\rm a}$.

Initial	0.5	0	0
Change	-x	+x	+x
Equili-	0.5 - x (but x	x	x
brium	is negligible)		

x is negligible compared to 0.5 in this situation because the K_a is so small (which means the reaction isn't going to go very much. We leave in the other two x's in because they are not negligible compared to zero:

$$K_{\rm a} = \frac{[\rm CN^{-}][\rm H^{+}]}{[\rm HCN]}$$

$$4 \times 10^{-10} = \frac{x^2}{0.5}$$

$$x = 1.4 \times 10^{-5} = [\rm H^{+}]$$

$$p\rm H = -log (1.4 \times 10^{-5}) = 4.85$$

Msci 19 0007

 $\begin{array}{c} 18:06,\, {\rm general,\, multiple\, choice,\, >1\, min,\, fixed.}\\ \mathbf{005}\\ {\rm Rank\,\, the\,\, following\,\, 1.0\,\, M\,\, solutions}\\ {\rm NaCN,\, H_2S,\, RbOH,\, CaCl_2,\, HI}\\ {\rm in\,\, order\,\, of\,\, DECREASING\,\, pH.} \end{array}$

1. RbOH, NaCN, CaCl₂, H_2S , HI correct

 $\textbf{2.} CaCl_2, NaCN, H_2S, HI, RbOH$

3. H_2S , HI, NaCN, RbOH, $CaCl_2$

 $\textbf{4.} NaCN, CaCl_2, RbOH, HI, H_2S$

5. RbOH, CaCl₂, HI, NaCN, H₂S

Explanation:

 $\begin{array}{c} \textbf{DAL Acid Base Type}\\ 11:04, \, \mathrm{general}, \, \mathrm{multiple \ choice}, \, < 1 \ \mathrm{min}, \, .\\ \mathbf{006}\\ \mathrm{For \ the \ reaction} \end{array}$

 $\mathrm{Al}^{3+} + 3\,\mathrm{NH}_3 \rightarrow \mathrm{Al}(\mathrm{NH}_3)_3$

 Al^{3+} is best described as

1. a Lewis acid. correct

2. a Lewis base.

3. a Brønsted acid.

4. a Brønsted base.

5. neither an acid nor a base.

Explanation:

Msci 18 0835

18:08, general, multiple choice, $> 1 \min$, fixed. 007

Calculate the pH of an aqueous solution containing 0.10 M NH₃ and 0.10 M NH₄Cl. $K_{\rm b}$ for NH₃ is 1.8×10^{-5} .

- **1.** 9.26 **correct**
- **2.** 9.40
- **3.** 9.70
- **4.** 11.11

5. 9.31

Explanation: $[NH_3] = 0.10 M$

 $[NH_3] = 0.10 \text{ M}$ $K_b = 1.8 \times 10^{-5}$ $[{\rm NH}_4^+] = 0.10 \; {\rm M}$

This is an ammonia buffer solution in which $[NH_3] = [NH_4^+]$, so

 $pOH = pK_b = -\log(1.8 \times 10^{-5}) = 4.74473$ pH = 14.00 - pOH = 9.25527

Msci 18 0724

18:08, general, multiple choice, $> 1 \min$, fixed. 008

Which of the following mixtures will be a buffer when dissolved in a liter of water?

1. $0.1 \mod Ca(OH)_2$ and $0.3 \mod HI$

2. 0.3 mol NaCl and 0.3 mol HCl

3. $0.4 \mod NH_3$ and $0.4 \mod HCl$

4. $0.2 \ \mathrm{mol} \ \mathrm{HBr}$ and $0.1 \ \mathrm{mol} \ \mathrm{NaOH}$

5. 0.2 mol HF and 0.1 mol NaOH correct

Explanation:

Eliminate answers that are obviously incorrect. The choice with "0.2 mol HBr" and " $0.1 \text{ mol Ca}(\text{OH})_2$ " are strong acids and strong bases respectively; therefore, NOT buffers. The choice with "0.3 mol NaCl" is a combination of spectator ions and a strong acid; this does not form a buffer. Remaining for calculation are choices with " 0.4 mol NH_3 " and "0.2 mol HF". Now perform the neutralizaton calculations on the remaining possibilities: Choice with 0.4 mol NH_3

	NH ₃ -	\vdash H ⁺ \equiv	\doteq NH ₄ ⁻
Initial	0.4	0.4	0
Change	-0.4	-0.4	0.4
Final	0	0	0.4

Choice with 0.2 mol HF

	HF +	- OH [−] ₹	$\geq F^{-}$ -	$+ H_2O$
Initial	0.2	0.1	0	_
Change	-0.1	-0.1	0.1	—
Final	0.1	0	0.1	_

The choice with 0.2 mol HF has both weak acid and weak conjugate base left over, so it is the buffer solution.

Sparks Kb 002

18:01, general, multiple choice, $< 1 \min$, fixed. 009

Consider the following table:

Base	Ionization Constant $K_{\rm b}$ value
Aniline Hydroxylamine Trimethylamine	$\begin{array}{c} 4.2 \times 10^{-10} \\ 6.6 \times 10^{-9} \\ 7.4 \times 10^{-5} \end{array}$

Which would have the strongest conjugate acid?

1. aniline correct

2. hydroxylamine

3. trimethylamine

4. All are equally strong.

Explanation:

DAL Buffer Capacity

18:08, general, multiple choice, $> 1 \min$, .

010

A buffer is formed by mixing 100 mL of 0.2 M HClO₂ and 200 mL of 0.7 M KClO₂.

What volume of 0.2 M KOH can be added before the buffer capacity is reached?

1. 700 mL

2. 300 mL

3. 100 mL correct

4. 150 mL

5. 10 mL

Explanation:

Msci 18 0883

18:08, general, multiple choice, $> 1 \min$, fixed. 011

If 100 mL of 0.040 M NaOH solution is added to 100 mL of solution which is 0.10 M in CH₃COOH and 0.10 M in NaCH₃COO, what will the pH of the new solution be? ($K_{\rm a} = 1.8 \times 10^{-5}$)

1. 4.74	
2. 4.81	
3. 4.89	
4. 5.00	
5. 5.11 correct	

Explanation:

$$\begin{split} [CH_{3}COOH] &= 0.10 \text{ M} & [NaOH] = 0.040 \text{ M} \\ [CH_{3}COO^{-}] &= 0.10 \text{ M} & K_{a} = 1.8 \times 10^{-5} \\ \text{Initial condition (ini):} \\ n_{\text{NaOH}} &= 100 \times 0.04 = 4 \text{ mmol} \end{split}$$

$n_{\mathrm{CH}_{3}\mathrm{COOH}} = 100 \times 0.10 = 10 \text{ mmol}$						
n_{Na}	$_{+} = 100$	$\times 0.10 = 10 \text{ m}$	imol			
n_{CH}	$I_3COO-=$	$= 100 \times 0.10 =$	$10 \mathrm{mm}$	nol		
Ν	AaOH +	$CH_3COOH \rightarrow$	Na^++	$-CH_3COO^-$		
				$+ H_2O$		
ini	4.0	10.0	10.0	10.0		
Δ	-4.0	-4.0	4.0	4.0		
fin	0	6.0	14.0	14.0		
N	Na^+ is a spectator ion.					

 CH_3COOH/CH_3COO^- is a buffer system.

$$pH = pK_a + \log\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right)$$
$$= -\log\left(1.8 \times 10^{-5}\right) + \log\left(\frac{14.0}{6.0}\right)$$
$$= 5.1127$$

ChemPrin3e T11 49 B

18:10, basic, numeric, > 1 min, wording-variable.

012

The curve for the titration of dimethylamine base $((CH_3)_2NH)$ with HF(aq) acid is given below.

Estimate the pK_b of dimethylamine base. $C_a = 0.5, C_b = 0.5, \text{ and the volume of } (CH_3)_2NH \text{ is 100 mL.}$

1. 10.9 **correct**

3. 5.73

4. 50

5. None of these

Explanation:

$$K_{\rm b} = 7.4 \times 10^{-4}$$
 $K_{\rm w} = 10^{-14}$
 $C_{\rm a} = 0.5$ $C_{\rm b} = 0.5$
 $V_{\rm dimethylaming} = 100 \text{ mL}$

 $V_{\rm dimethylamine} = 100 \,\mathrm{mL}$

The equivalence point of this titration is when the curve is at an inflection point; *i.e.*, at a volume of 100 mL.

The pH at the equivalence point of this titration is 5.73 pH.

The p $K_{\rm b}$ can be found at one-half the volume of the equivalence point; *i.e.*, at 50 mL. The p $K_{\rm b}$ is 10.9 pH from looking at the graph.

The formula is

$$pK_{b} = -\log\left(\frac{K_{w}}{K_{b}}\right)$$
$$= -\log\left(\frac{10^{-14}}{7.4 \times 10^{-4}}\right)$$
$$= -\log\left(0.135135 \times 10^{-10}\right)$$
$$= 10.8692 \text{ pH}.$$

Note: The pK_b is the pH when the mole fraction is 0.5.

5

Msci 19 0722

18:10, general, multiple choice, >1 min, fixed. \$013\$

How many endpoints would be observed in a titration of the triprotic acid (H_3A) ?

1.3 correct

2. 2

3. 1

4. None of these

5. 4

Explanation:

$$H_3A \rightarrow H^+ + H_2A^-$$

$$H_2A \rightarrow H^+ + HA^{2-}$$

$$\mathrm{HA}^{-} \to \mathrm{H}^{+} + \mathrm{A}^{3-}$$

These three dissociation equations show that three endpoints will be seen.

Msci 19 0611

18:10, basic, multiple choice, > 1 min, fixed. 014

Calculate the pH of a solution prepared by adding 80.0 mL of 0.100 M NaOH solution to 100 ml of 0.100 M HNO₃ solution.

1. 1.95 **correct**

2. 2.02

3. 2.08

4. 2.16

5. 2.24

Explanation:

 $n_{\rm HNO_3} = 100 \times 0.100 = 10 \text{ mmol}$

	NaOH -	$+ HNO_3 -$	$\rightarrow Na^+$ -	$+ \text{NO}_3^-$	$+ H_2O$
ini	8	10	0	0	
Δ	-8	-8	8	8	
fin	0	2	8	8	

 HNO_3 is a strong acid, and Na^+ and $NO_3^$ are spectator ions. Total volume = 180 mL

 $[\mathrm{H}_{3}\mathrm{O}^{+}] = \frac{2 \mathrm{~mmol}}{180 \mathrm{~mL}} = 0.0111111 \mathrm{~M}$

$$pH = -\log(0.0111111) = 1.95424$$

DAL Equiv Pt

18:10, general, multiple choice, > 1 min, . 015

What is the pH when 100 mL of 0.1 M HI is titrated with 50 mL of 0.2 M LiOH?

1.7 correct

2. 1

3. 13.3

- **4.** 1.2
- **5.** 12.8

Explanation:

Msci 19 0734

18:10, general, multiple choice, $> 1 \min$, fixed. 016

A 100 mL portion of 0.300 M acetic acid is being titrated with 0.200 M NaOH solution.

What is the [H⁺] of the solution after 50.0 mL of the NaOH solution has been added? The ionization constant of acetic acid is 1.8×10^{-5} .

1. 3.63×10^{-5} correct

2. 8.95×10^{-6}

3. 1.21×10^{-5}

4. 9.94×10^{-6}

5. 6.01×10^{-4}

Explanation:

$$\begin{split} V_{\rm CH_3COOH} &= 100 \mbox{ mL} & V_{\rm NaOH} = 50 \mbox{ mL} \\ [\rm CH_3COOH] &= 0.300 \mbox{ M} & [\rm NaOH] = 0.200 \mbox{ M} \\ K_{\rm a} &= 1.8 \times 10^{-5} \end{split}$$

Initially,

 $n_{\rm CH_3COOH} = (100 \text{ mL})(0.3 \text{ M}) = 30 \text{ mmol}$ $n_{\rm NaOH} = (50 \text{ mL})(0.2 \text{ M}) = 10 \text{ mmol}$

C	CH ₃ COOH	[+NaOH→0	CH_3COO^{-1}	$^{-}+Na^{+}$
				$+H_2O$
ini	30	10	0	0
Δ	-10	-10	10	10
fin	20	0	10	10

 Na^+ is a spectator ion. CH₃COOH and CH₃COO⁻ form a buffer. Total volume = 150 mL

$$pH = pK_a + \log\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right)$$
$$= -\log(1.8 \times 10^{-5})$$
$$+ \log\left(\frac{10 \text{ mmol}/150 \text{ mL}}{20 \text{ mmol}/150 \text{ mL}}\right)$$
$$= 4.4437$$
$$[H_3O^+] = 10^{-4.4437} = 3.6 \times 10^{-5} \text{ M}$$

DAL 02 0316

18:01, general, multiple choice, $< 1 \min$, fixed. 017

A solution of 50 mL of 0.3 M acetic acid is titrated with 75 mL of 0.2 M NaOH.

What is the pH of the resulting solution? $K_{\rm a}$ for acetic acid is 1.8×10^{-5} .

1. 8.91 **correct**

2. 7.00

3. 5.1

4. 12.1

Explanation:

DAL Solubility

19:01, general, multiple choice, < 1 min, . 018

Given the following table

\mathbf{Cmpd}	$K_{ m sp}$
Ag_2S	6.3×10^{-51}
ZnS	1.6×10^{-24}
CuS	1.3×10^{-36}
$\mathrm{Cu}_2\mathrm{S}$	2.0×10^{-47}

of $K_{\rm sp}$ values for sulfides, which is the least soluble? (Hint: You can find the correct answer by performing simple math in your head.)

1. Ag_2S correct

2. ZnS

- **3.** CuS
- 4. Cu_2S

Explanation:

Msci 20 0308

19:01, general, multiple choice, $> 1 \min$, fixed. 019

At slightly below room temperature, the solubility product constant for $\text{Zn}(\text{OH})_2$ is 3.2×10^{-17} .

What is the molar solubility of $Zn(OH)_2$ in water at this temperature?

1. 2.8×10^{-9} M 2. 7.9×10^{-7} M 3. 2.0×10^{-6} M correct 4. 3.2×10^{-6} M 5. 1.0×10^{-3} M

Explanation:

ChemPrin3e T11 74

18:01, basic, multiple choice, < 1 min, fixed. 020 Calculate the solubility product of calcium hydroxide if the solubility of $Ca(OH)_2(s)$ in water at 25°C is 0.011 M.

- **1.** 1.5×10^{-8}
- **2.** 1.1×10^{-5}
- **3.** 2.7×10^{-6}
- 4. 5.3×10^{-6} correct

5. 1.2×10^{-4}

Explanation:

$Msci\ 20\ 0315$

19:01, basic, multiple choice, > 1 min, fixed. 021

Suppose CuBr(s) is added to a 0.050 M NaBr aqueous solution until saturation.

What is the concentration of Cu⁺? ($K_{\rm sp} = 5.3 \times 10^{-9}$ for CuBr.)

- **1.** 1.1×10^{-7} correct
- **2.** 7.3×10^{-5}
- **3.** 1.6×10^{-5}
- **4.** 2.5×10^{-3}
- **5.** 2.2×10^{-1}

Explanation: $K_{\rm sp} = 5.3 \times 10^{-9}$

[NaBr] = 0.05 M

 $CuBr \rightleftharpoons Cu^{+} + Br^{+}$ $K_{sp} = [Cu^{+}] [Br^{-}] = 5.3 \times 10^{-9}$ Let $[Cu^{+}] = x$, and $[Br^{-}] = x + 0.05$ $x (x + 0.05) = 5.3 \times 10^{-9}$ $x^{2} + 0.05 x - (5.3 \times 10^{-9}) = 0$ Solving this quadratic equation gives $x = 1.06 \times 10^{-7}, \text{ or } x = -0.05.$

Since the negative value is meaningless,

 $x = [Cu^+] = 1.1 \times 10^{-7}$.

Msci 18 0906 18:02, general, multiple choice, $> 1 \min$, fixed.

022

Suppose that a sample of pure water is saturated with gaseous CO_2 to form a solution of carbonic acid.

Which response has the following species arranged in the order of decreasing concentrations at equilibrium (from highest concentration to lowest concentration)?

H⁺, H₂CO₃, HCO₃⁻, CO₃²⁻
 H₂CO₃, HCO₃⁻, H⁺, CO₃²⁻
 CO₃²⁻, H⁺, HCO₃⁻, H₂CO₃
 HCO₃⁻, H₂CO₃, CO₃²⁻, H⁺
 H₂CO₃, H⁺, HCO₃⁻, CO₃²⁻ correct

Explanation:

Since carbonic acid is a weak acid, it is only partially dissociated, so in a solution of carbonic acid, the dominant species would be H₂CO₃. To the extent it does dissociate, it dissociates into H⁺ and HCO₃⁻. HCO₃⁻, in turn, can dissociate into H⁺ and CO₃²⁻, but again this only happens to a very small extent. Thus more H⁺ will be present than HCO₃⁻, and very little CO₃²⁻ will be present.

PH 10 108a

18:01, general, multiple choice, >1 min, normal.

$\mathbf{023}$

Calculate the pH of 0.095 M NaH₂AsO₄(aq). $pK_{a1} = 2.25$, $pK_{a2} = 6.77$, and $pK_{a3} = 11.6$.

1. 4.51 **correct**

2. 5.62

3. 3.07

4. 9.18

5. None of these

Explanation:

Initially the salt dissociates into Na⁺ and $H_2AsO_4^-$ ions. Na⁺ is an extremely weak acid and does not affect the equilibrium. There are three equilibria to consider for the anion but as we start with $H_2AsO_4^-$, the first and second dissociations are most pertinent; we use these to calculate pH:

$$pH = \frac{1}{2} (pK_{a1} + pK_{a2})$$
$$= \frac{1}{2} (2.25 + 6.77)$$
$$= 4.51.$$

DAL Mass Charge Balance

19:99, general, multiple choice, $> 1~{\rm min},$. $\mathbf{024}$

Which of the following is a correct mass balance expression for the addition of H_2CO_3 to water?

1.
$$C_{\text{H}_2\text{CO}_3} = [\text{H}_2\text{CO}_3] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}]$$

correct

2.
$$[\mathrm{H}^+] = [\mathrm{HCO}_3^-] + [\mathrm{CO}_3^{2-}] + [\mathrm{OH}^-]$$

3.
$$C_{\text{H}_2\text{CO}_3} = [\text{HCO}_3^-] + [\text{CO}_3^{2-}]$$

4.
$$K_{\rm w} = [{\rm H}^+] + [{\rm OH}^-]$$

Explanation:

ChemPrin3e T10 52

18:99, general, multiple choice, < 1 min, fixed. 025

Which equation represents K_{a2} for phosphoric acid?

1.
$$HPO_4^{2-}(aq) + H_2O(\ell) \rightarrow PO_4^{3-}(aq) + H_3O^+(aq)$$

2.
$$H_2PO_4^-(aq) + H_2O(\ell) \rightarrow HPO_4^{2-}(aq) + H_3O^+(aq)$$
 correct

3.
$$H_3PO_4(aq) + 2 H_2O(\ell) \rightarrow HPO_4^{2-}(aq) + 2 H_3O^+(aq)$$

4.
$$HPO_4^{2-}(aq) + H_2O(\ell) \rightarrow H_2PO_4^-(aq) + OH^-(aq)$$

5.
$$H_3PO_4(aq) + H_2O(\ell) \rightarrow H_2PO_4^-(aq) + H_3O^+(aq)$$

Explanation:

DAL H Concen

19:99, general, multiple choice, $> 1~{\rm min},$.

$\mathbf{026}$

Which equation would be appropriate to find the H^+ concentration of a dilute solution of HBr in water?

1.
$$[H^+] = C_{HBr}$$

2. $[H^+] = (K_a C_{HBr})^{0.5}$
3. $[H^+]^2 + C_{HBr} [H^+] + K_w = 0$ correct
4. $[H^+]^2 + K_a [H^+] - K_a C_{HBr} = 0$
5. $[H^+]^3 + K_a [H^+]^2 - (K_w + K_a C_{HBr}) [H^+] - K_a K_w = 0$
Explanation:

DAL Equil

19:99, general, multiple choice, < 1 min, .

027

A solution is made in which 0.1 mole of H_2SO_4 is added to 1 liter of water.

Which statement about $[H^+]$ at equilibrium is true?

1.
$$0.2 \text{ M} < [\text{H}^+]$$

2. $[\mathrm{H^+}] = 0.2 \mathrm{M}$

3. $0.1 \text{ M} < [\text{H}^+] < 0.2 \text{ M}$ correct

4.
$$[\mathrm{H^+}] = 0.1 \mathrm{M}$$

5.
$$[H^+] < 0.1 M$$

Explanation:

Msci 18 0918

18:02, general, multiple choice, $> 1 \min$, fixed. 028

What is the pH of a 0.020 M solution of hydrosulfuric acid, a diprotic acid?

 $\times 10^{-14}$

$K_{\rm a1} = 1.1 \times 10^{-7}$	$K_{a2} = 1.0$
1. 7.00	
2. 9.67	
3. 7.84	
4. 4.33 correct	
5. 3.65	
6. 4.69	
7. 5.22	

Explanation:

Solve using ONLY the 1st ionization. So this works like any other monoprotic acid where the assumption

 $[\mathrm{H}^+] = \sqrt{(\mathrm{Conc})(K_{\mathrm{a1}})}$ is valid.

ChemPrin3e T10 71

18:99, general, multiple choice, < 1 min, wording-variable.

029

Consider the fractional composition diagram for the amino acid alanine.

What is the structure of the dominant species at pH 2?

1. HOOC — $CH(CH_3)NH_3^+$ correct

2. $^{-}$ OOC — CH(CH₃)NH₃⁺

3. $^{-}$ OOC — CH(CH₃)NH₂

Explanation:

To the left of 2.348, the red graph representing HOOC — $CH(CH_3)NH_3^+$ is dominant.

Between 2.348 and 9.867, the blue graph representing $-OOC - CH(CH_3)NH_3^+$ is dominant.

To the right of 9.867, the green graph representing $^{-}OOC - CH(CH_3)NH_2$ is dominant.

DAL 02 0307

18:01, general, multiple choice, < 1 min, fixed. 030

For which of the following solutions of a weak acid would you feel most confident of an accurate answer in using the equation $[\mathrm{H}^+] = \sqrt{K_{\mathrm{a}} C_{\mathrm{a}}}?$

1. 0.0005 M solution with a $K_{\rm a}$ of 2.7×10^{-8}

2. 0.2 M solution with a $K_{\rm a}$ of 2.3×10^{-3}

3. 0.2 M solution with a $K_{\rm a}$ of 2.7×10^{-8} correct

4. 0.0005 M solution with a $K_{\rm a}$ of 2.3×10^{-3}

Explanation:

For $K_{\rm a} = \frac{x^2}{C_{\rm a} - x}$, $x = [{\rm H}^+]$, when $K_{\rm a}$ is a small, the acid dissociates very little, resulting in a small x. If $C_{\rm a}$ is large and x is small then $C_{\rm a} - x \approx C_{\rm a}$.