$\begin{aligned} & 17 \\ & 801 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ON} \\ \mathrm{ZOL} \\ \hline \end{gathered}$	PW	$\begin{gathered} w_{-1} \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{\exists} \\ 66 \\ \hline \end{gathered}$	${ }^{\circ 0_{86}}$	$\begin{array}{r} \text { Y马 }_{26} \\ \hline \end{array}$	$\begin{array}{r} \text { wo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ \mathrm{sb} \\ \hline \end{gathered}$	$d_{t 6}$	$\begin{gathered} (\angle \Sigma z) \\ \mathrm{d} \\ \mathrm{E} \end{gathered}$	${ }_{26}^{18 \varepsilon z}$	$\begin{gathered} 1 \varepsilon z \\ d_{16} \end{gathered}$	${ }_{\stackrel{1}{+}}$
L96t	to	$2+56$	92	E066t91	0¢ 291	\＆ 56685	STLLSI	${ }_{596 \text { ISI }}$	$9{ }^{\text {cosi }}$	（StI）	ャでゅt1	06	sı0tı
n7	9人	m_{\perp}	壮	OH	人0	$\mathrm{q} \perp$	pפ	$\mathrm{n} \exists$	us	ud	PN	$1{ }^{1}$	əО
12	02	69	89	29	99	s9	†9	$\varepsilon 9$	29	19	09	6 S	89

									$\begin{gathered} (992) \\ +W \\ 601 \end{gathered}$	$\begin{array}{c\|} \hline \text { (592) } \\ \mathrm{SH} \\ 801 \end{array}$	$\begin{aligned} & \text { (292) } \\ & 48 \end{aligned}$ $\angle 01$	$\begin{array}{c\|} \hline(\xi 9 z) \\ \mathrm{DS} \\ 90 \mathrm{l} \end{array}$	$\begin{gathered} (z 92) \\ 90 \\ \text { 901 } \end{gathered}$	$\begin{gathered} (192) \\ f+4 \\ +01 \end{gathered}$	$\begin{gathered} (L z z) \\ \partial \forall \\ 68 \end{gathered}$	$\begin{aligned} & (9 z z) \\ & \text { ey } \\ & 88 \\ & \hline \end{aligned}$	
$\begin{gathered} (z z \tau) \\ u y_{98} \end{gathered}$	$\stackrel{\text {（012）}}{1}+$	$\begin{aligned} & (602) \\ & \mathrm{O}_{\mathrm{d}} \\ & \mathrm{t} 8 \end{aligned}$	$\begin{array}{\|r\|} \hline 008680 \tau \\ !9 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \tau \angle L O Z \\ & \mathrm{qd} \\ & \text { z } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon 8 \varepsilon+00 \\ \perp_{18} \\ \hline 18 \end{gathered}$	$\begin{gathered} \stackrel{65}{6} 00 \mathrm{z}_{\mathrm{D}}^{\mathrm{H}} \\ 08 \end{gathered}$	s996961 n \forall 62	$\begin{gathered} 80^{\circ} \mathrm{s} 6 \mathrm{l} \\ \mathrm{td} \\ 82 \end{gathered}$	$\begin{gathered} 2 \pi z 61 \\ 11 \\ \\ \hline 12 \end{gathered}$	$\begin{gathered} \mathrm{z}^{2061} \\ \mathrm{SO}_{92} \end{gathered}$	$\begin{gathered} \angle 0 Z 981 \\ \partial \mathrm{y} \\ \mathrm{GL} \end{gathered}$	$\begin{gathered} \hline 58 \& 81 \\ M+L \end{gathered}$	$\begin{gathered} 6466081 \\ \mathrm{ED} \\ \mathrm{EL} \end{gathered}$	$\begin{gathered} 6+8 \mathrm{ILI} \\ \mathrm{H} \\ \mathrm{zL} \end{gathered}$	$\begin{gathered} 55068 \varepsilon 1 \\ 87 \\ \hline \quad 29 \end{gathered}$		
	$\begin{array}{cc} \text { sto } \\ & 1 \\ & \\ \hline \end{array}$	$\begin{gathered} 09 \angle \mathrm{LZI} \\ { }_{\mathrm{O}}{ }_{\mathrm{ZS}} \end{gathered}$	$\begin{gathered} \hline \angle 1.121 \\ \mathrm{qS} \\ \mathrm{LG} \end{gathered}$	$\begin{gathered} \begin{array}{c} 01 \angle 8 I I \\ \text { US }_{0 S} \end{array} \end{gathered}$	$\begin{gathered} 28+\mathrm{tII} \\ \mathrm{ul} \\ 6 \mathrm{ta} \end{gathered}$	$\mathrm{PO}_{8}^{\mathrm{It}+\mathrm{CII}}$	z898 Lor万 \forall Lt	$\begin{gathered} 2 t \cdot 901 \\ \text { Pd } \\ 90 \end{gathered}$	s 506 zol पप्」 st	$\begin{gathered} \text { L0' } 101 \\ \text { ny } \\ t o t \end{gathered}$	$\begin{aligned} & (86) \\ & \stackrel{\perp}{\varepsilon} \\ & \hline \end{aligned}$	$\begin{gathered} \hline+6: 96 \\ \text { OW } \\ \quad \mathrm{Zt} \\ \hline \end{gathered}$	$\begin{gathered} 5906 \mathrm{Zb} \\ \mathrm{qN} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} +2 z^{\prime} 16 \\ 1 Z^{0} \\ 0 t \end{gathered}$	$\begin{gathered} 650688 \\ \lambda_{6 \varepsilon} \end{gathered}$	$\begin{gathered} 29 \angle 8 \\ 1 S^{8 \varepsilon} \\ \hline \end{gathered}$	829t＇s8 qप्d Lع
$\begin{gathered} 08 \varepsilon 8 \\ 1 \gamma_{1} \\ 9 \varepsilon \end{gathered}$	$\begin{gathered} 50666 \\ 19 \\ 98 \end{gathered}$	$\begin{gathered} 968 L \\ \partial S_{t \varepsilon} \end{gathered}$	$\begin{array}{\|c\|} \hline 9766+L \\ s \forall \\ \varepsilon \varepsilon \\ \hline \end{array}$	$\begin{aligned} & 197 L \\ & \text { әפ } \\ & \text { z६ } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon L \cdot 69 \\ 89 \\ 1 \varepsilon \end{gathered}$	$\begin{gathered} 6 \cdot: 59 \\ \mathrm{uZ}^{2} \\ 0 \varepsilon \end{gathered}$	$\begin{gathered} 9+\zeta \varepsilon 9 \\ \mathrm{n} \mathrm{~S}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6985 \\ & !\mathrm{N}_{8} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \varepsilon \varepsilon 685 \\ 0 O^{2} \\ L Z \end{gathered}$	$\begin{gathered} \text { L+8'ss } \\ \partial \mathrm{J} \\ 9 z \end{gathered}$	$0886+5$ uW sz	$\begin{gathered} 1966 \text { is } \\ 10 \\ \text { tz } \end{gathered}$	$\begin{gathered} \text { Sit } 60 s \\ \Lambda_{\varepsilon \tau} \\ \hline \end{gathered}$	$\begin{gathered} 88 \angle t \\ !\perp \\ \hline \quad 2 z \\ \hline \end{gathered}$		$\begin{aligned} & 8 \angle 0^{\circ 0 t} \\ & \text { ejo } \\ & 0 \end{aligned}$	$\begin{gathered} 8860 \cdot 6 \varepsilon \\ y_{1} \\ 61 \end{gathered}$
$\begin{gathered} 8+66 \varepsilon \\ 1 \forall^{81} \end{gathered}$	$\begin{gathered} \angle z s t^{\angle S} \leq \varepsilon \\ 1 O_{\angle 1} \end{gathered}$	$\begin{gathered} 990 \cdot \mathrm{Z} \mathrm{\varepsilon} \\ \mathrm{~S}_{91} \end{gathered}$	$\left.\begin{array}{\|c\|} 8 \varepsilon L G^{\circ} 0 \varepsilon \\ d_{\text {Gl }} \end{array} \right\rvert\,$			$\begin{aligned} & 2! \\ & \mathrm{gl} \end{aligned}$	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\stackrel{01}{\circ}$	88	8	Q^{L}	99	g	gঃt	$\begin{gathered} \varepsilon \varepsilon \\ \varepsilon \varepsilon \end{gathered}$		$\begin{gathered} 8686 \mathrm{zz} \\ \text { EN } \end{gathered}$
$\begin{gathered} \text { L6LIOR } \\ \partial \mathrm{N}_{01} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86681 \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { +666'S1 } \\ \mathrm{O}_{8} \end{gathered}$	$\stackrel{\angle 900}{ } \mathrm{~N}_{2}+1$	$\begin{gathered} 110 \mathrm{zl} \\ \mathrm{O}_{9} \\ \hline \end{gathered}$	$\begin{gathered} 11800 \\ \mathrm{~g}^{\prime} \\ \hline \end{gathered}$											$\begin{gathered} 2 \pi 10 \% \\ \partial g_{\mathrm{t}}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1+69 \\ & ! \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 9zoo't } \\ & \text { } \begin{array}{c} \text { OH } \\ \\ \hline \end{array} \\ & \hline \end{aligned}$	$\stackrel{\angle 1}{\forall L}$	$\begin{aligned} & 9! \\ & \forall 9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{9}{\text { G }} \\ & \forall G \end{aligned}$	$\stackrel{\rightharpoonup!}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{\varepsilon}{\forall 1} \\ & \forall \varepsilon \end{aligned}$											$\stackrel{z}{\forall}$	$\mathrm{Cl}_{6}^{6200^{\prime}}$
$\begin{aligned} & \hline 8! \\ & \forall 8 \end{aligned}$							SұU	UЈ	В	$1{ }^{\circ}$	Ә［	L	P00	$\mathrm{O}^{\text {d }}$			$\stackrel{1}{\forall 1}$

This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Lyon E3 07

18:01, general, multiple choice, >1 min, fixed. 001
Like all equilibrium constants, K_{w} varies somewhat with temperature.

Given that K_{w} is 4.95×10^{-13} at some temperature, what is the pH of a neutral aqueous solution at that temperature?

1. 6.15 correct
2. 6.06
3. 6.22
4. 6.34
5. 6.43

Explanation:

DAL 020303
18:01, general, multiple choice, $<1 \mathrm{~min}$, fixed. 002
Which of the following statements is true with respect to the autodissociation of water when sipping a glass of ice water?
I. $\mathrm{pH}=\mathrm{pOH}=7$
II. $\mathrm{pH}<7$
III. $\mathrm{pH}=\mathrm{pOH}$
IV. $\mathrm{pH}>7$

1. I and III only

2. III and IV only correct
3. II only
4. IV only

Explanation:

Since water autodissociates, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$. For any given temperature, the pH of pure water is defined as neutral and $\mathrm{pH}=\mathrm{pOH}$. At
$25^{\circ} \mathrm{C}$ neutral $\mathrm{pH}=7 . K_{\mathrm{a}}$ will be smaller than 1×10^{-7} at $0^{\circ} \mathrm{C}$ because water autodissociates less than $25^{\circ} \mathrm{C} . \mathrm{pH}$ will therefore be greater than 7 at $0^{\circ} \mathrm{C}$.

ChemPrin3e T10 19

18:99, general, multiple choice, <1 min, fixed. 003
What is the pH of a 0.005 M aqueous solution of calcium hydroxide?

1. 11.40
2. 2.00
3. 12.00 correct
4. 12.70
5. 11.70

Explanation:

Msci 180408

18:01, general, multiple choice, >1 min, fixed. 004
0.50 moles of HCN are added to a liter of water.

What is the $\mathrm{pH} ?\left(K_{\mathrm{a}}\right.$ of HCN is $\left.4.0 \times 10^{-10}\right)$

1. 4.69
2. 5.35
3. 4.85 correct
4. 9.40
5. 4.35

Explanation:

HCN is not a strong acid so $\left[\mathrm{H}^{+}\right]$will not be 0.5 M . To figure it out, we must look at the K_{a}.

$$
\mathrm{HCN} \longrightarrow \mathrm{H}^{+}+\mathrm{CN}^{-}
$$

Initial	0.5	0	0
Change	$-x$	$+x$	$+x$
Equili- brium	$0.5-x$ (but x is negligible)	x	x

x is negligible compared to 0.5 in this situation because the K_{a} is so small (which means the reaction isn't going to go very much. We leave in the other two x 's in because they are not negligible compared to zero:

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{CN}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCN}]} \\
4 \times 10^{-10} & =\frac{x^{2}}{0.5} \\
x & =1.4 \times 10^{-5}=\left[\mathrm{H}^{+}\right] \\
\mathrm{pH} & =-\log \left(1.4 \times 10^{-5}\right)=4.85
\end{aligned}
$$

Msci 190007
18:06, general, multiple choice, >1 min, fixed. 005
Rank the following 1.0 M solutions
$\mathrm{NaCN}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{RbOH}, \mathrm{CaCl}_{2}$, HI
in order of DECREASING pH .

1. $\mathrm{RbOH}, \mathrm{NaCN}, \mathrm{CaCl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HI}$ correct
2. $\mathrm{CaCl}_{2}, \mathrm{NaCN}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HI}, \mathrm{RbOH}$
3. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{HI}, \mathrm{NaCN}, \mathrm{RbOH}, \mathrm{CaCl}_{2}$
4. $\mathrm{NaCN}, \mathrm{CaCl}_{2}, \mathrm{RbOH}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{~S}$
5. $\mathrm{RbOH}, \mathrm{CaCl}_{2}, \mathrm{HI}, \mathrm{NaCN}, \mathrm{H}_{2} \mathrm{~S}$

Explanation:

DAL Acid Base Type
11:04, general, multiple choice, $<1 \mathrm{~min}$, . 006
For the reaction

$$
\mathrm{Al}^{3+}+3 \mathrm{NH}_{3} \rightarrow \mathrm{Al}\left(\mathrm{NH}_{3}\right)_{3}
$$

Al^{3+} is best described as

1. a Lewis acid. correct
2. a Lewis base.
3. a Brønsted acid.
4. a Brønsted base.
5. neither an acid nor a base.

Explanation:

Msci 180835

18:08, general, multiple choice, $>1 \mathrm{~min}$, fixed. 007
Calculate the pH of an aqueous solution containing $0.10 \mathrm{M} \mathrm{NH}_{3}$ and $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl} . K_{\mathrm{b}}$ for NH_{3} is 1.8×10^{-5}.

1. 9.26 correct
2. 9.40
3. 9.70
4. 11.11
5. 9.31

Explanation:

$\left[\mathrm{NH}_{3}\right]=0.10 \mathrm{M}$
$\left[\mathrm{NH}_{4}^{+}\right]=0.10 \mathrm{M}$
$K_{\mathrm{b}}=1.8 \times 10^{-5}$
This is an ammonia buffer solution in which $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}^{+}\right]$, so
$\mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}=-\log \left(1.8 \times 10^{-5}\right)=4.74473$

$$
\mathrm{pH}=14.00-\mathrm{pOH}=9.25527
$$

Msci 180724

18:08, general, multiple choice, $>1 \mathrm{~min}$, fixed. 008
Which of the following mixtures will be a buffer when dissolved in a liter of water?

1. $0.1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ and 0.3 mol HI
2. 0.3 mol NaCl and 0.3 mol HCl
3. $0.4 \mathrm{~mol} \mathrm{NH}_{3}$ and 0.4 mol HCl
4. 0.2 mol HBr and 0.1 mol NaOH

5. 0.2 mol HF and 0.1 mol NaOH correct

Explanation:

Eliminate answers that are obviously incorrect. The choice with " 0.2 mol HBr " and " 0.1 $\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2} "$ are strong acids and strong bases respectively; therefore, NOT buffers. The choice with " $0.3 \mathrm{~mol} \mathrm{NaCl"} \mathrm{is} \mathrm{a} \mathrm{combina-}$ tion of spectator ions and a strong acid; this does not form a buffer. Remaining for calculation are choices with " $0.4 \mathrm{~mol} \mathrm{NH}_{3}$ " and " 0.2 mol HF". Now perform the neutralizaton calculations on the remaining possibilities:
Choice with $0.4 \mathrm{~mol} \mathrm{NH}_{3}$

$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}$			
Initial	0.4	0.4	0
Change	-0.4	-0.4	0.4
Final	0	0	0.4

Choice with 0.2 mol HF

$\mathrm{HF}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}$				
Initial	0.2	0.1	0	-
Change	-0.1	-0.1	0.1	-
Final	0.1	0	0.1	-

The choice with 0.2 mol HF has both weak acid and weak conjugate base left over, so it is the buffer solution.

Sparks Kb 002

18:01, general, multiple choice, <1 min, fixed. 009
Consider the following table:

Base	Ionization Constant K_{b} value
Aniline	4.2×10^{-10}
Hydroxylamine	6.6×10^{-9}
Trimethylamine	7.4×10^{-5}

Which would have the strongest conjugate acid?

1. aniline correct
2. hydroxylamine
3. trimethylamine
4. All are equally strong.

Explanation:

DAL Buffer Capacity

18:08, general, multiple choice, $>1 \mathrm{~min}$, 010
A buffer is formed by mixing 100 mL of 0.2 M HClO_{2} and 200 mL of $0.7 \mathrm{M} \mathrm{KClO}_{2}$.

What volume of 0.2 M KOH can be added before the buffer capacity is reached?

1. 700 mL
2. 300 mL
3. 100 mL correct
4. 150 mL
5. 10 mL

Explanation:

Msci 180883

18:08, general, multiple choice, >1 min, fixed. 011
If 100 mL of 0.040 M NaOH solution is added to 100 mL of solution which is 0.10 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.10 M in $\mathrm{NaCH}_{3} \mathrm{COO}$, what will the pH of the new solution be? $\quad\left(K_{\mathrm{a}}=\right.$ 1.8×10^{-5})

1. 4.74
2. 4.81
3. 4.89
4. 5.00

5. 5.11 correct

Explanation:

$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.10 \mathrm{M} \quad[\mathrm{NaOH}]=0.040 \mathrm{M}$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.10 \mathrm{M}$

$$
K_{\mathrm{a}}=1.8 \times 10^{-5}
$$

Initial condition (ini):
$n_{\mathrm{NaOH}}=100 \times 0.04=4 \mathrm{mmol}$
$n_{\mathrm{CH}_{3} \mathrm{COOH}}=100 \times 0.10=10 \mathrm{mmol}$
$n_{\mathrm{Na}^{+}}=100 \times 0.10=10 \mathrm{mmol}$
$n_{\mathrm{CH}_{3} \mathrm{COO}^{-}}=100 \times 0.10=10 \mathrm{mmol}$

$\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow$				$\mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
			$+\mathrm{H}_{2} \mathrm{O}$	
ini	4.0	10.0	10.0	10.0
Δ	-4.0	-4.0	4.0	4.0
fin	0	6.0	14.0	14.0

Na^{+}is a spectator ion.
$\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COO}^{-}$is a buffer system.

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right) \\
& =-\log \left(1.8 \times 10^{-5}\right)+\log \left(\frac{14.0}{6.0}\right) \\
& =5.1127
\end{aligned}
$$

ChemPrin3e T11 49 B

18:10, basic, numeric, > 1 min, wordingvariable.

012

The curve for the titration of dimethylamine base $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right)$ with $\mathrm{HF}(\mathrm{aq})$ acid is given below.

Estimate the $\mathrm{p} K_{\mathrm{b}}$ of dimethylamine base. $C_{\mathrm{a}}=0.5, C_{\mathrm{b}}=0.5$, and the volume of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is 100 mL .

1. 10.9 correct
2. 100
3. 5.73
4. 50
5. None of these

Explanation:
$\begin{array}{lr}K_{\mathrm{b}}=7.4 \times 10^{-4} & K_{\mathrm{w}}=10^{-14} \\ C_{\mathrm{a}}=0.5 & C_{\mathrm{b}}=0.5 \\ V_{\text {dimethylamine }}=100 \mathrm{~mL} & \end{array}$

The equivalence point of this titration is when the curve is at an inflection point; i.e., at a volume of 100 mL .

The pH at the equivalence point of this titration is 5.73 pH .

The $\mathrm{p} K_{\mathrm{b}}$ can be found at one-half the volume of the equivalence point; i.e., at 50 mL . The $\mathrm{p} K_{\mathrm{b}}$ is 10.9 pH from looking at the graph.

The formula is

$$
\begin{aligned}
\mathrm{p} K_{\mathrm{b}} & =-\log \left(\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}}\right) \\
& =-\log \left(\frac{10^{-14}}{7.4 \times 10^{-4}}\right) \\
& =-\log \left(0.135135 \times 10^{-10}\right) \\
& =10.8692 \mathrm{pH} .
\end{aligned}
$$

Note: The $\mathrm{p} K_{\mathrm{b}}$ is the pH when the mole fraction is 0.5.

Msci 190722

18:10, general, multiple choice, >1 min, fixed. 013
How many endpoints would be observed in a titration of the triprotic acid $\left(\mathrm{H}_{3} \mathrm{~A}\right)$?

1. 3 correct
2. 2
3. 1
4. None of these
5. 4

Explanation:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{~A} \rightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~A}^{-} \\
& \mathrm{H}_{2} \mathrm{~A} \rightarrow \mathrm{H}^{+}+\mathrm{HA}^{2-} \\
& \mathrm{HA}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{3-}
\end{aligned}
$$

These three dissociation equations show that three endpoints will be seen.

Msci 190611

18:10, basic, multiple choice, $>1 \mathrm{~min}$, fixed.

014

Calculate the pH of a solution prepared by adding 80.0 mL of 0.100 M NaOH solution to 100 ml of $0.100 \mathrm{M} \mathrm{HNO}_{3}$ solution.

1. 1.95 correct
2. 2.02
3. 2.08
4. 2.16
5. 2.24

Explanation:

$V_{\mathrm{NaOH}}=80.0 \mathrm{~mL}$

$$
V_{\mathrm{HNO}_{3}}=100 \mathrm{~mL}
$$

$[\mathrm{NaOH}]=0.100 \mathrm{M}$
$\left[\mathrm{HNO}_{3}\right]=0.100 \mathrm{M}$
$n_{\mathrm{HNO}_{3}}=100 \times 0.100=10 \mathrm{mmol}$

	$\mathrm{NaOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{Na}^{+}+\mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$			
ini	8	10	0	0
Δ	-8	-8	8	8
fin	0	2	8	8

HNO_{3} is a strong acid, and Na^{+}and NO_{3}^{-} are spectator ions.
Total volume $=180 \mathrm{~mL}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{2 \mathrm{mmol}}{180 \mathrm{~mL}}=0.0111111 \mathrm{M}
$$

$$
\mathrm{pH}=-\log (0.0111111)=1.95424
$$

DAL Equiv Pt
18:10, general, multiple choice, $>1 \mathrm{~min}$, 015
What is the pH when 100 mL of 0.1 M HI is titrated with 50 mL of 0.2 M LiOH ?

1. 7 correct

2. 1
3. 13.3
4. 1.2
5. 12.8

Explanation:

Msci 190734

18:10, general, multiple choice, >1 min, fixed. 016
A 100 mL portion of 0.300 M acetic acid is being titrated with 0.200 M NaOH solution.

What is the $\left[\mathrm{H}^{+}\right]$of the solution after 50.0 mL of the NaOH solution has been added? The ionization constant of acetic acid is $1.8 \times$ 10^{-5}.

1. 3.63×10^{-5} correct
2. 8.95×10^{-6}
3. 1.21×10^{-5}
4. 9.94×10^{-6}
5. 6.01×10^{-4}

Explanation:

$V_{\mathrm{CH}_{3} \mathrm{COOH}}=100 \mathrm{~mL} \quad V_{\mathrm{NaOH}}=50 \mathrm{~mL}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.300 \mathrm{M} \quad[\mathrm{NaOH}]=0.200 \mathrm{M}$
$K_{\mathrm{a}}=1.8 \times 10^{-5}$
Initially,
$n_{\mathrm{CH}_{3} \mathrm{COOH}}=(100 \mathrm{~mL})(0.3 \mathrm{M})=30 \mathrm{mmol}$
$n_{\mathrm{NaOH}}=(50 \mathrm{~mL})(0.2 \mathrm{M})=10 \mathrm{mmol}$

| $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| $+\mathrm{H}_{2} \mathrm{O}$ | | | |

Na^{+}is a spectator ion. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$form a buffer.
Total volume $=150 \mathrm{~mL}$

$$
\begin{aligned}
\mathrm{pH}= & \mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right) \\
= & -\log \left(1.8 \times 10^{-5}\right) \\
& +\log \left(\frac{10 \mathrm{mmol} / 150 \mathrm{~mL}}{20 \mathrm{mmol} / 150 \mathrm{~mL}}\right) \\
= & 4.4437 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=} & 10^{-4.4437}=3.6 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

DAL 020316

18:01, general, multiple choice, $<1 \mathrm{~min}$, fixed. 017
A solution of 50 mL of 0.3 M acetic acid is titrated with 75 mL of 0.2 M NaOH .

What is the pH of the resulting solution? K_{a} for acetic acid is 1.8×10^{-5}.

1. 8.91 correct
2. 7.00
3. 5.1
4. 12.1

Explanation:

DAL Solubility

19:01, general, multiple choice, $<1 \mathrm{~min}$, .

018

Given the following table

Cmpd	$K_{\text {sp }}$
$\mathrm{Ag}_{2} \mathrm{~S}$	6.3×10^{-51}
ZnS	1.6×10^{-24}
CuS	1.3×10^{-36}
$\mathrm{Cu}_{2} \mathrm{~S}$	2.0×10^{-47}

of K_{sp} values for sulfides, which is the least soluble? (Hint: You can find the correct answer by performing simple math in your head.)

1. $\mathrm{Ag}_{2} \mathrm{~S}$ correct

2. ZnS
3. CuS
4. $\mathrm{Cu}_{2} \mathrm{~S}$

Explanation:

Msci 200308

19:01, general, multiple choice, $>1 \mathrm{~min}$, fixed.
019
At slightly below room temperature, the solubility product constant for $\mathrm{Zn}(\mathrm{OH})_{2}$ is 3.2×10^{-17}.

What is the molar solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ in water at this temperature?

1. $2.8 \times 10^{-9} \mathrm{M}$
2. $7.9 \times 10^{-7} \mathrm{M}$
3. $2.0 \times 10^{-6} \mathrm{M}$ correct
4. $3.2 \times 10^{-6} \mathrm{M}$
5. $1.0 \times 10^{-3} \mathrm{M}$

Explanation:

ChemPrin3e T11 74

18:01, basic, multiple choice, $<1 \mathrm{~min}$, fixed.
020
Calculate the solubility product of calcium
hydroxide if the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is 0.011 M .

1. 1.5×10^{-8}
2. 1.1×10^{-5}
3. 2.7×10^{-6}
4. 5.3×10^{-6} correct
5. 1.2×10^{-4}

Explanation:

Msci 200315
19:01, basic, multiple choice, $>1 \mathrm{~min}$, fixed. 021
Suppose $\mathrm{CuBr}(\mathrm{s})$ is added to a 0.050 M NaBr aqueous solution until saturation.

What is the concentration of $\mathrm{Cu}^{+} ?\left(K_{\mathrm{sp}}=\right.$ 5.3×10^{-9} for CuBr .)

1. 1.1×10^{-7} correct
2. 7.3×10^{-5}
3. 1.6×10^{-5}
4. 2.5×10^{-3}
5. 2.2×10^{-1}

Explanation:

$K_{\mathrm{sp}}=5.3 \times 10^{-9} \quad[\mathrm{NaBr}]=0.05 \mathrm{M}$

$$
\begin{gathered}
\mathrm{CuBr} \rightleftharpoons \mathrm{Cu}^{+}+\mathrm{Br}^{+} \\
K_{\mathrm{sp}}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{Br}^{-}\right]=5.3 \times 10^{-9}
\end{gathered}
$$

Let $\left[\mathrm{Cu}^{+}\right]=x$, and $\left[\mathrm{Br}^{-}\right]=x+0.05$

$$
\begin{gathered}
x(x+0.05)=5.3 \times 10^{-9} \\
x^{2}+0.05 x-\left(5.3 \times 10^{-9}\right)=0
\end{gathered}
$$

Solving this quadratic equation gives

$$
x=1.06 \times 10^{-7}, \text { or } x=-0.05
$$

Since the negative value is meaningless,

$$
x=\left[\mathrm{Cu}^{+}\right]=1.1 \times 10^{-7} .
$$

Msci 180906
18:02, general, multiple choice, $>1 \mathrm{~min}$, fixed. 022
Suppose that a sample of pure water is saturated with gaseous CO_{2} to form a solution of carbonic acid.

Which response has the following species arranged in the order of decreasing concentrations at equilibrium (from highest concentration to lowest concentration)?

1. $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
2. $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{H}^{+}, \mathrm{CO}_{3}^{2-}$
3. $\mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}, \mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}$
4. $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}$
5. $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}^{+}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$ correct

Explanation:

Since carbonic acid is a weak acid, it is only partially dissociated, so in a solution of carbonic acid, the dominant species would be $\mathrm{H}_{2} \mathrm{CO}_{3}$. To the extent it does dissociate, it dissociates into H^{+}and HCO_{3}^{-}. HCO_{3}^{-}, in turn, can dissociate into H^{+}and CO_{3}^{2-}, but again this only happens to a very small extent. Thus more H^{+}will be present than HCO_{3}^{-}, and very little CO_{3}^{2-} will be present.

PH 10 108a

18:01, general, multiple choice, $>1 \mathrm{~min}$, normal.

023
Calculate the pH of $0.095 \mathrm{M} \mathrm{NaH}_{2} \mathrm{AsO}_{4}(\mathrm{aq})$. $\mathrm{p} K_{\mathrm{a} 1}=2.25, \mathrm{p} K_{\mathrm{a} 2}=6.77$, and $\mathrm{p} K_{\mathrm{a} 3}=11.6$.

1. 4.51 correct

2. 5.62
3. 3.07
4. 9.18
5. None of these

Explanation:

Initially the salt dissociates into Na^{+}and $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$ions. Na^{+}is an extremely weak acid and does not affect the equilibrium. There are three equilibria to consider for the anion but as we start with $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$, the first and second dissociations are most pertinent; we use these to calculate pH :

$$
\begin{aligned}
\mathrm{pH} & =\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) \\
& =\frac{1}{2}(2.25+6.77) \\
& =4.51 .
\end{aligned}
$$

DAL Mass Charge Balance
19:99, general, multiple choice, $>1 \mathrm{~min}$,

$$
024
$$

Which of the following is a correct mass balance expression for the addition of $\mathrm{H}_{2} \mathrm{CO}_{3}$ to water?

1. $C_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]$ correct
2. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
3. $C_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]$
4. $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]$

Explanation:

ChemPrin3e T10 52

18:99, general, multiple choice, <1 min, fixed. 025
Which equation represents $K_{\mathrm{a} 2}$ for phosphoric acid?

$$
\begin{aligned}
& \text { 1. } \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \qquad \mathrm{PO}_{4}^{3-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

2. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \text { correct }
$$

3. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

4. $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\text { 5. } \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\underset{\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Explanation:

DAL H Concen

19:99, general, multiple choice, $>1 \mathrm{~min}$,
026
Which equation would be appropriate to find the H^{+}concentration of a dilute solution of HBr in water?

1. $\left[\mathrm{H}^{+}\right]=C_{\mathrm{HBr}}$
2. $\left[\mathrm{H}^{+}\right]=\left(K_{\mathrm{a}} C_{\mathrm{HBr}}\right)^{0.5}$
3. $\left[\mathrm{H}^{+}\right]^{2}+C_{\mathrm{HBr}}\left[\mathrm{H}^{+}\right]+K_{\mathrm{w}}=0$ correct
4. $\left[\mathrm{H}^{+}\right]^{2}+K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]-K_{\mathrm{a}} C_{\mathrm{HBr}}=0$
5. $\left[\mathrm{H}^{+}\right]^{3}+K_{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{2}$

$$
-\left(K_{\mathrm{w}}+K_{\mathrm{a}} C_{\mathrm{HBr}}\right)\left[\mathrm{H}^{+}\right]-K_{\mathrm{a}} K_{\mathrm{w}}=0
$$

Explanation:

DAL Equil

19:99, general, multiple choice, $<1 \mathrm{~min}$, .

$$
027
$$

A solution is made in which 0.1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 1 liter of water.

Which statement about $\left[\mathrm{H}^{+}\right]$at equilibrium is true?

$$
\text { 1. } 0.2 \mathrm{M}<\left[\mathrm{H}^{+}\right]
$$

2. $\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M}$
3. $0.1 \mathrm{M}<\left[\mathrm{H}^{+}\right]<0.2 \mathrm{M}$ correct
4. $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$
5. $\left[\mathrm{H}^{+}\right]<0.1 \mathrm{M}$

Explanation:

Msci 180918
18:02, general, multiple choice, $>1 \mathrm{~min}$, fixed. 028
What is the pH of a 0.020 M solution of hydrosulfuric acid, a diprotic acid?
$K_{\mathrm{a} 1}=1.1 \times 10^{-7} \quad K_{\mathrm{a} 2}=1.0 \times 10^{-14}$

1. 7.00
2. 9.67
3. 7.84
4. 4.33 correct
5. 3.65
6. 4.69
7. 5.22

Explanation:

Solve using ONLY the 1st ionization. So this works like any other monoprotic acid where the assumption
$\left[\mathrm{H}^{+}\right]=\sqrt{(\text { Conc })\left(K_{\mathrm{a} 1}\right)}$
is valid.

ChemPrin3e T10 71

18:99, general, multiple choice, <1 min, wording-variable.

029

Consider the fractional composition diagram for the amino acid alanine.

What is the structure of the dominant species at pH 2 ?

1. $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$correct

2. ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$

3. ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$

Explanation:

To the left of 2.348, the red graph representing $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$is dominant.

Between 2.348 and 9.867 , the blue graph representing ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$is dominant.

To the right of 9.867, the green graph representing ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$ is dominant.

DAL 020307

18:01, general, multiple choice, <1 min, fixed. 030
For which of the following solutions of a weak acid would you feel most confident of an accurate answer in using the equation $\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} C_{\mathrm{a}}}$?

1. 0.0005 M solution with a K_{a} of 2.7×10^{-8}
2. 0.2 M solution with a K_{a} of 2.3×10^{-3}
3. 0.2 M solution with a K_{a} of 2.7×10^{-8} correct
4. 0.0005 M solution with a K_{a} of 2.3×10^{-3}

Explanation:

For $K_{\mathrm{a}}=\frac{x^{2}}{C_{\mathrm{a}}-x}, x=\left[\mathrm{H}^{+}\right]$, when K_{a} is a small, the acid dissociates very little, resulting in a small x. If C_{a} is large and x is small then $C_{\mathrm{a}}-x \approx C_{\mathrm{a}}$.

