CH302 Spring 2009 Practice Quiz 5. The TA Version

1. Which of the following expressions would be equal to the rate of the reaction below?

$$
2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}
$$

1. $-(\Delta[\mathrm{KOH}] / 2 \cdot \Delta \mathrm{t})$
2. $-\left(\Delta\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right] / \Delta \mathrm{t}\right)$
3. $\left(2 \cdot \Delta\left[\mathrm{MnO}_{2}\right] / \Delta t\right)$
4. $\left(\Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / \Delta \mathrm{t}\right)$
5. $-\left(\Delta\left[\mathrm{Na}_{2} \mathrm{SO}_{3}\right] / 3 \cdot \Delta \mathrm{t}\right)$
6. $-\left(\Delta\left[\mathrm{KMnO}_{4}\right] / \Delta t\right)$
7. Consider the data below:

Experiment number	$[\mathrm{A}]$ M	$[\mathrm{B}]$ M	$[\mathrm{C}]$ M	$[\mathrm{D}]$ M	initial rate $\mathrm{M} \cdot \mathrm{s}^{-1}$
1	0.025	0.03	0.04	0.056	1.04×10^{-6}
2	0.025	0.12	0.04	0.056	4.16×10^{-6}
3	0.025	0.015	0.08	0.056	5.2×10^{-7}
4	0.075	0.03	0.01	0.056	9.36×10^{-6}
5	0.025	0.06	0.07	0.112	1.04×10^{-6}

What is the overall order of this reaction?

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. What would be the units of the rate constant (k) for the rate law below?

$$
\text { rate }=\mathrm{k} \cdot\left[\mathrm{O}_{2}\right] \cdot[\mathrm{CO}]^{-1} \cdot\left[\mathrm{Cl}_{2}\right]^{1}
$$

1. s^{-1}
2. $M^{-2} \cdot \mathrm{~s}^{-1}$
3. $M^{-1} \cdot s^{-1}$
4. $M^{1} \cdot s^{-1}$
5. Consider two hypothetical zero-order reactions. If reaction 1 is faster than reaction 2 at room temperature, but slower than reaction 2 at much higher temperatures, then reaction 1 must have the (larger/smaller) activation energy and must have the (larger/smaller) pre-exponential factor. (Hint: consider both the Arrhenius equation and combined Arrhenius equation.)
6. larger, smaller
7. larger, larger
8. smaller, smaller
9. smaller, larger
10. Consider the elementary reaction:
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
If $k=3.6 \times 10^{2} \mathrm{~s}^{-1}$, and there is initially $0.781 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$, what is the $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ after 1.2 ms have passed?
11. 0.507 M
12. 0.349 M
13. 0.584 M
14. 1.203 M
15. Consider the reaction:

$$
\mathrm{AgClO}(\mathrm{aq}) \rightarrow 1 / 2 \mathrm{O}_{2}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s})
$$

If an aqueous system initially has a [AgClO] of 112 mM and 3 minutes later has a [AgClO] of 7 mM , what is the half life of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$?

1. 90 seconds
2. 180 seconds
3. 60 seconds
4. 45 seconds
5. not enough information
6. To which of the following reactions would collision state theory not apply? (Note: consider the direction of the arrow in arriving at the correct answer).
7. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
8. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
9. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
10. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
11. Consider the reaction mechanism below:
step 1: $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
step 2: $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{Br}_{2} \mathrm{NO}(\mathrm{g})$
step 3: $\mathrm{Br}_{2} \mathrm{NO}(\mathrm{g})+\mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{BrNO}(\mathrm{g})$
overall: $\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrNO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
If step 3 is the slow step, addition of which of the species below would slow down the observed rate of the reaction?
12. $\mathrm{NO}(\mathrm{g})$
13. $\mathrm{BrNO}(\mathrm{g})$
14. $\mathrm{Br}_{2}(\mathrm{~g})$
15. $\mathrm{O}_{2}(\mathrm{~g})$
16. $\mathrm{Br}_{2} \mathrm{NO}(\mathrm{g})$
