- 1. Which of the following expressions would be equal to the rate of the reaction below? $2 \text{ KMnO}_4 + 3 \text{ Na}_2\text{SO}_3 + \text{H}_2\text{O} \rightarrow 2 \text{ MnO}_2 + 3 \text{ Na}_2\text{SO}_4 + 2 \text{ KOH}$
 - 1. -(Δ[KOH] / 2·Δt)
 - 2. -(Δ[Na₂SO₄] / Δt)
 - 3. (2·Δ[MnO₂] / Δt)
 - 4. (Δ[H₂O] / Δt)
 - 5. -(Δ[Na₂SO₃] / 3·Δt)
 - 6. -(Δ[KMnO₄] / Δt)
- 2. Consider the data below:

Experiment number	[A] M	[B] M	[C] M	[D] M	initial rate M·s ⁻¹
1	0.025	0.03	0.04	0.056	1.04 x 10 ⁻⁶
2	0.025	0.12	0.04	0.056	4.16 x 10 ⁻⁶
3	0.025	0.015	0.08	0.056	5.2 x 10 ⁻⁷
4	0.075	0.03	0.01	0.056	9.36 x 10 ⁻⁶
5	0.025	0.06	0.07	0.112	1.04 x 10 ⁻⁶

What is the overall order of this reaction?

- 1.1
- 2. 2
- 3.3
- 4.4
- 5.5
- 6.6

3. What would be the units of the rate constant (k) for the rate law below?

 $\mathsf{rate} = \mathsf{k} \cdot [\mathsf{O}_2] \cdot [\mathsf{CO}]^{-1} \cdot [\mathsf{Cl}_2]^1$

- 1. s⁻¹
- 2. M⁻²·s⁻¹
- 3. M⁻¹⋅s⁻¹
- 4. M¹·s⁻¹

4. Consider two hypothetical zero-order reactions. If reaction 1 is faster than reaction 2 at room temperature, but slower than reaction 2 at much higher temperatures, then reaction 1 must have the (larger/smaller) activation energy and must have the (larger/smaller) pre-exponential factor. (Hint: consider both the Arrhenius equation and combined Arrhenius equation.)

- 1. larger, smaller
- 2. larger, larger
- 3. smaller, smaller
- 4. smaller, larger
- 5. Consider the elementary reaction:

 $H_2CO_3(aq) \rightarrow CO_2(aq) + H_2O(I)$

If $k = 3.6 \times 10^2 \text{ s}^{-1}$, and there is initially 0.781 M H₂CO₃, what is the [H₂CO₃] after 1.2 ms have passed?

- 1.0.507 M
- 2. 0.349 M
- 3. 0.584 M
- 4. 1.203 M

6. Consider the reaction:

 $AgClO(aq) \rightarrow 1/2 O_2(aq) + AgCl(s)$

If an aqueous system initially has a [AgClO] of 112 mM and 3 minutes later has a [AgClO] of 7 mM, what is the half life of $H_2O_2(aq)$?

- 1. 90 seconds
- 2. 180 seconds
- 3. 60 seconds
- 4.45 seconds
- 5. not enough information

7. To which of the following reactions would collision state theory not apply? (Note: consider the direction of the arrow in arriving at the correct answer).

- 1. N₂(g) + 3 H₂(g) → 2 NH₃(g)
- 2. $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$
- 3. 2 H₂(g) + O₂(g) → 2 H₂O(g)
- 4. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

8. Consider the reaction mechanism below:

step 1: 2 NO₂(g) \rightarrow 2 NO(g) + O₂(g)

step 2: $Br_2(g) + NO(g) \rightarrow Br_2NO(g)$

step 3: $Br_2NO(g) + NO(g) \rightarrow 2 BrNO(g)$

overall: $Br_2(g) + 2 NO_2(g) \rightarrow 2 BrNO(g) + O_2(g)$

If step 3 is the slow step, addition of which of the species below would slow down the observed rate of the reaction?

- 1. NO(g)
- 2. BrNO(g)
- 3. Br₂(g)
- 4. O₂(g)
- 5. Br₂NO(g)