CH302 Spring 2009 Practice Quiz 5. The TA Version

1. Which of the following expressions would be equal to the rate of the reaction below?

$$
2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}
$$

1. $-(\Delta[\mathrm{KOH}] / 2 \cdot \Delta \mathrm{t})$
2. $-\left(\Delta\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right] / \Delta \mathrm{t}\right)$
3. $\left(2 \cdot \Delta\left[\mathrm{MnO}_{2}\right] / \Delta t\right)$
4. $\left(\Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / \Delta \mathrm{t}\right)$
5. $-\left(\Delta\left[\mathrm{Na}_{2} \mathrm{SO}_{3}\right] / 3 \cdot \Delta \mathrm{t}\right) \quad$ Correct
6. $-\left(\Delta\left[\mathrm{KMnO}_{4}\right] / \Delta t\right)$

Explanation: rate $=-\left(\Delta\left[\mathrm{KMnO}_{4}\right] / 2 \cdot \Delta \mathrm{t}\right)=-\left(\Delta\left[\mathrm{Na}_{2} \mathrm{SO}_{3}\right] / 3 \cdot \Delta \mathrm{t}\right)=-\left(\Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / \Delta \mathrm{t}\right)=\left(\Delta\left[\mathrm{MnO}_{2}\right] / 2 \cdot \Delta \mathrm{t}\right)=$ $\left(\Delta\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right] / 3 \cdot \Delta \mathrm{t}\right)=(\Delta[\mathrm{KOH}] / 2 \cdot \Delta \mathrm{t})$
2. Consider the data below:

Experiment number	$[A]$ M	$[B]$ M	$[C]$ M	$[D]$ M	initial rate $M \cdot s^{-1}$
1	0.025	0.03	0.04	0.056	1.04×10^{-6}
2	0.025	0.12	0.04	0.056	4.16×10^{-6}
3	0.025	0.015	0.08	0.056	5.2×10^{-7}
4	0.075	0.03	0.01	0.056	9.36×10^{-6}
5	0.025	0.06	0.07	0.112	1.04×10^{-6}

What is the overall order of this reaction?

1. 1
2. 2 Correct
3. 3
4. 4
5. 5
6. 6

Explanation:
The most obvious order to solve for first is the order B. This is because B is the only species for which two experiments were performed in which it was the only species whose concentration was changed. The order of B is 1 , as shown below.
$\left(\right.$ rate $_{1} /$ rate $\left._{2}\right)=\left([B]_{1} /[B]_{2}\right)^{b}$
$\left(1.04 \times 10^{-6} / 4.16 \times 10^{-6}\right)=(0.03 / 0.12)^{b}$
$(1 / 4)=(1 / 4)^{\mathrm{b}}$
$b=1$
Comparing experiments 1 and 3, we can see that both B and C were varied, but fortunately, we've already solved for the order of B and so C is now accessible as well. We simple set up the solution as above and incorporate another term for the concentration of C .
$\left(\right.$ rate $_{1} /$ rate $\left._{3}\right)=\left([B]_{1} /[B]_{3}\right)^{b} \times\left([C]_{1} /[C]_{3}\right)^{\mathrm{C}}$
$\left(1.04 \times 10^{-6} / 5.2 \times 10^{-7}\right)=(0.03 / 0.015)^{1} \times(0.04 / 0.08)^{c}$
(2) $=(2)^{1} \times(1 / 2)^{\mathrm{C}}$
$\mathrm{c}=0$
Having determined that the order of C is zero, we can simply ignore it for the remainder of the solving this problem. Considering C as irrelevant, solving for the order of A is easy as it is the only unknown varied between experiments 1 and 4 .
$\left(\right.$ rate $_{1} /$ rate $\left._{4}\right)=\left([\mathrm{A}]_{1} /[\mathrm{A}]_{4}\right)^{\mathrm{a}}$
$\left(1.04 \times 10^{-6} / 9.36 \times 10^{-6}\right)=(0.025 / 0.075)^{a}$
$(1 / 9)=(1 / 3)^{a}$
$a=2$
The concentration of D is only changed in experiment 5 . Since we've determined all of the other orders, we can compare this to any other experiment and find the order of D . To simplify the math, comparing to experiment 1 is best.
$\left(\right.$ rate $_{1} /$ rate $\left._{5}\right)=\left([B]_{1} /[B]_{5}\right)^{\mathrm{b}} \times\left([\mathrm{D}]_{1} /[\mathrm{D}]_{5}\right)^{\mathrm{d}}$
$\left(1.04 \times 10^{-6} / 1.04 \times 10^{-6}\right)=(0.03 / 0.06)^{1} \times(0.056 / 0.112)^{\mathrm{d}}$
$(1)=(1 / 2)^{1} \times(1 / 2)^{\mathrm{d}}$
d $=-1$
rate $=\mathrm{k} \cdot[\mathrm{A}]^{2} \cdot[\mathrm{~B}]^{1} \cdot[\mathrm{D}]^{-1}$
Th overall order is $2+1+-1=2$
3. What would be the units of the rate constant (k) for the rate law below?

$$
\text { rate }=\mathrm{k} \cdot\left[\mathrm{O}_{2}\right] \cdot[\mathrm{CO}]^{-1} \cdot\left[\mathrm{Cl}_{2}\right]^{1}
$$

1. s^{-1} Correct

2. $\mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
3. $M^{-1} \cdot s^{-1}$
4. $M^{1} \cdot s^{-1}$

Explanation: rate $=\mathrm{k} \cdot\left[\mathrm{O}_{2}\right] \cdot[\mathrm{CO}]^{-1} \cdot\left[\mathrm{Cl}_{2}\right]^{1}$
The overall order is 1 . The units on k are therefore s^{-1}.
4. Consider two hypothetical zero-order reactions. If reaction 1 is faster than reaction 2 at room temperature, but slower than reaction 2 at much higher temperatures, then reaction 1 must have the (larger/smaller) activation energy and must have the (larger/smaller) pre-exponential factor. (Hint: consider both the Arrhenius equation and combined Arrhenius equation.)

1. larger, smaller
2. larger, larger
3. smaller, smaller Correct
4. smaller, larger

Explanation: The fact that reaction 2 becomes faster than reaction 1 as the temperature is raised implies that it has a greater temperature dependence, in other words a smaller E_{a}. The fact that at room higher temperatures reaction 2 is faster means it has the larger pre-exponential term.

5. Consider the elementary reaction:

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
If $k=3.6 \times 10^{2} \mathrm{~s}^{-1}$, and there is initially $0.781 \mathrm{M}_{2} \mathrm{CO}_{3}$, what is the $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right.$] after 1.2 ms have passed?

1. 0.507 M Correct
2. 0.349 M
3. 0.584 M
4. 1.203 M

Explanation: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]_{\mathrm{o}} \mathrm{e}^{-\mathrm{kt}}$
$=0.781 \mathrm{e}^{\wedge}\left(-3.6 \times 10^{2} \mathrm{~s}^{-1} .0 .0012 \mathrm{~s}\right)$
$=0.507 \mathrm{M}$
6. Consider the reaction:
$\mathrm{AgClO}(\mathrm{aq}) \rightarrow 1 / 2 \mathrm{O}_{2}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
If an aqueous system initially has a [AgClO] of 112 mM and 3 minutes later has a [AgClO] of 7 mM , what is the half life of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$?

1. 90 seconds
2. 180 seconds
3. 60 seconds
4. 45 seconds Correct
5. not enough information

Explanation $112 \cdot 0.5^{x}=7$
$x=4$ half-lives
3 minutes $=180$ seconds
$t_{1 / 2}=180 / 4=45$ seconds
7. To which of the following reactions would collision state theory not apply? (Note: consider the direction of the arrow in arriving at the correct answer).

1. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
2. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
4. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad$ Correct

Explanation: A single reactant does not require a collision in order to achieve a transition state.
8. Consider the reaction mechanism below:
step 1: $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
step 2: $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{Br}_{2} \mathrm{NO}(\mathrm{g})$
step 3: $\mathrm{Br}_{2} \mathrm{NO}(\mathrm{g})+\mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{BrNO}(\mathrm{g})$
overall: $\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrNO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
If step 3 is the slow step, addition of which of the species below would slow down the observed rate of the reaction?

1. $\mathrm{NO}(\mathrm{g})$
2. $\mathrm{BrNO}(\mathrm{g})$
3. $\mathrm{Br}_{2}(\mathrm{~g})$
4. $\mathrm{O}_{2}(\mathrm{~g})$ Correct
5. $\mathrm{Br}_{2} \mathrm{NO}(\mathrm{g})$

Explanation: A product produced before the rate-limiting step will inhibit the forward reaction in which it appear.

