

	59	60	61	62				66	67			70	
Ce	Pr	6	Pm	Sm	E	Gd	Ъ	Ų	ᅌ	щ	Tm	ð	
	140.9076		(145)	150.36		157.25	158.9253	162.50	Ξ		168.9342	173.04	
90	91	92					97	98	99	100			
굼	Pa	\subset	N P	Pu	Am	Cm	묫	Ω Ω	Еs	Fm	_	N _o	<u>「</u>
232.0381	231.0359	238.0289					(247)	(251)	(252)	(257)	(258)	(259)	

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

Msci 18 0924

18:02, basic, multiple choice, > 1 min, fixed.

Carbonic acid (H₂CO₃) is a diprotic acid with $K_{\rm a1} = 4.2 \times 10^{-7}$ and $K_{\rm a} = 4.8 \times 10^{-11}$. The ion product for water is $K_{\rm w} = 1.0 \times 10^{-14}$.

What is the $[H_3O^+]$ concentration in a saturated carbonic acid solution that is 0.037 molar?

- 1. $3.7 \times 10^{-20} \text{ M}$
- **2.** $7.4 \times 10^{-2} \text{ M}$
- 3. $6.5 \times 10^{-4} \text{ M}$
- **4.** $1.2 \times 10^{-4} \text{ M correct}$
- **5.** $4.2 \times 10^{-7} \text{ M}$

Explanation:

$Msci\ 46\ 0013$

18:01, basic, multiple choice, > 1 min, fixed.

002

What is the pH of a 2×10^{-3} M HF? K_a for HF is 7.2×10^{-4} .

- **1.** 2.92
- 2. 3.05 correct
- **3.** 6.8
- **4.** 11.08

Explanation:

PH 10 77 78

18:01, general, multiple choice, > 1 min, wording-variable.

003

What is the pH of 0.15 M NaHSO₃(aq) if $K_{\rm a1} = 0.015$, $K_{\rm a2} = 1.2 \times 10^{-7}$, p $K_{\rm a1} = 1.81$

and $pK_{a2} = 6.91$?

- 1. 4.36 correct
- **2.** 8.31
- **3.** 7.82
- **4.** 6.92
- **5.** 3.02
- **6.** None of these

Explanation:

$$pK_{a1} = 1.81$$
 $pK_{a2} = 6.91$ $M = 0.15 M$

This is a salt of a polyprotic acid. The salt will dissociate into solution. The cation is an extremely weak acid and does not affect the equilibrium. The anion can then either protonate or deprotonate; the extent to which these processes occur is determined by the relative values of pK_{a1} and pK_{a2} . The pH is

$$pH = \frac{1}{2}(pK_{a1} + pK_{a2})$$
$$= \frac{1}{2}(1.81 + 6.91)$$
$$= 4.36.$$

Note the pH of a salt solution of a polyprotic acid is independent of the concentration of the salt as long as it is not extremely dilute.

ChemPrin3e T10 38

18:99, general, multiple choice, < 1 min, fixed.

Write the charge balance equation for a dilute aqueous solution of HI.

1.
$$[I^-] = [OH^-] + [H_3O^+]$$

- **2.** $[H_3O^+] = [OH^-]$
- 3. $[H_3O^+] = [I^-]$
- 4. $[H_3O^+] = [I^-] + [OH^-]$ correct
- **5.** $[HI]_{initial} = [I^{-}]$

Explanation:

ChemPrin3e T10 54

18:99, general, multiple choice, < 1 min, fixed. **005**

For a solution labeled " $0.10 \text{ M H}_3\text{PO}_4(\text{aq})$,"

- 1. $[H_2PO_4^-]$ is greater than 0.10 M.
- **2.** $[H^+] = 0.30 M.$
- 3. $[PO_4^{3-}] = 0.10 \text{ M}.$
- **4.** $[H^+] = 0.10 M.$
- 5. $[H^+]$ is less than 0.10 M. correct

Explanation:

Equil Sol

18:99, general, multiple choice, $<1~\mathrm{min},$.

006

A weakly acidic solution with a pH near 7 is formed when 1×10^{-7} moles of H_2SO_3 is added to 1 liter of water.

How many equations must be solved in order to accurately calculate all of the unknown concentrations formed at equilibrium in solution?

- 1. 5 correct
- **2.** 4
- **3.** 3
- **4.** 2
- **5.** 1
- **6.** 6
- **7.** 7

Explanation:

There are 5 ions that make contributions in this solution: H_2SO_3 , HSO_3^- , SO_3^{2-} , H^+ , and OH^- .

Msci 18 0907

18:02, basic, multiple choice, > 1 min, fixed.

007

What is the concentration of SO_4^{2-} in 2.0 M H_2SO_4 ? K_{a1} is strong and $K_{a2} = 1.2 \times 10^{-2}$.

- 1. $2.0 \times 10^{-1} \text{ M}$
- **2.** $1.2 \times 10^{-2} \text{ M correct}$
- 3. $4.0 \times 10^{-1} \text{ M}$
- **4.** $1.0 \times 10^{-7} \text{ M}$
- **5.** $4.0 \times 10^{-2} \text{ M}$

Explanation:

DAL 19 002

18:03, general, multiple choice, $< 1 \min$, fixed.

008

There are three sources of protons to be considered in calculating the pH of a solution formed when equal volumes of 1×10^{-8} M HCl and 1×10^{-2} M acetic acid (HAc) are added to water. Assume a $K_{\rm a}$ of 1.8×10^{-5} for acetic acid.

Rank from most to least, the concentration of protons contributed at equilibrium from HCl, HAc and H_2O .

- 1. HCl, HAc, H₂O
- 2. HAc, HCl, H_2O
- 3. HAc, H₂O, HCl correct
- **4.** H₂O, HCl, HAc
- 5. HCl, H₂O, HAc

Explanation: