In many kinetics problems, the first order of business (a pun) is to determine the order of a reaction. The order of a reaction is simply the sum of the exponents on the concentration terms for a rate law:

$$
\text { Rate }=\mathrm{k}[\mathrm{~A}]^{\mathrm{x}}[\mathrm{~B}]^{\mathrm{y}} \quad \text { reaction order }=\mathrm{x}+\mathrm{y}
$$

Example 1: \quad Rate $=k[A]^{1}[B]^{0}=k[A]$
is 1st order in [A] and 0th order in [B] and 1st order for the reaction.
Example 2: \quad Rate $=k[A]^{3}[B]^{0.5}$
is 3 rd order in [A], half order in [B] and $\mathbf{3 . 5}$ order overall.

What does the reaction order tell us: We need to know the order of a reaction because it tells us the functional relationship between concentration and rate. It determines how the amount of a compound speeds up or retards a reaction. For example, a reaction order of three means the rate of reaction increases as the cube of the concentration. A reaction order of $\mathbf{- 1}$ means the compound actually retards the rate of reaction.

Determining Reaction Order:

Here are four ways to learn the order of reaction from easiest to hardest:

1. They tell you in the problem. "In the first order reaction of"
2. You are given units for the rate constant. For example, if a reaction is first order the units are reciprocal time:

$$
\text { Proof: rate }=\mathrm{k}[\mathrm{~A}]^{1} \text { and rearranging, } \mathrm{k}=\text { rate } / \mathrm{M}=(\mathrm{M} / \mathrm{sec}) / \mathrm{M}=1 / \mathrm{sec}=\mathrm{sec}^{-1}
$$

In other words, the order of a reaction with $\mathrm{k}=1.24 \times 10^{-2} \mathrm{~min}^{-1}$ is first order.
Do the unit canceling yourself to find that

Zero order	1 st order	2 nd order
$\mathrm{k}=\mathrm{Msec}^{-1}$	$\mathrm{k}=\sec ^{-1}$	$\mathrm{k}=\mathrm{M}^{-1} \sec ^{-1}$

Remember, this only tells you the total order for the reaction, not the individual orders.
3. Method of initial rates. The favorite of every kinetics exam in general chemistry, you will be given a series of varying concentrations and a rate and from this asked to determine the individual and reaction rates.

	Example 1			Example 2			Example 3		
Trial	[A]	[B]	rate	[A]	[B]	rate	[A]	[B]	rate
1	. 1	. 1	1×10^{-4}	. 1	. 1	2×10^{-3}	. 1	. 1	5×10^{-5}
2	. 1	. 2	1×10^{-4}	. 1	. 3	54×10^{-3}	. 2	. 1	5×10^{-5}
3	. 3	. 1	3×10^{-4}	. 15	. 1	4.5×10^{-3}	1.84	. 2	2.5×10^{-5}
order	1	0	1 overall	2	3	5 overall	0	-1	-1 overall

In each case, you set up a ratio of concentrations and rates to fit the expression: rate $=k[A]^{x}$ or rate $=k[B]^{y}$ and ask, what does the order x or y have to be to make the equation true?

Example 1:

- hold [A] in trial 1 and 2 constant, then $\operatorname{rate}_{2} / \operatorname{rate}_{1}=\mathrm{k}\left(\left[\mathrm{B}_{2}\right] /\left[\mathrm{B}_{1}\right]\right)^{\mathrm{y}}$ so $1 \times 10^{-4} / 1 \times 10^{-4}=\mathrm{k}(.2 / .1)^{\mathrm{y}}$ and $\mathrm{y}=0$. This is a 0 th order reaction in B .
- now hold $[\mathrm{B}]$ in trial 1 and 3 constant, then
rate $_{3} / \operatorname{rate}_{1}=\mathrm{k}\left(\left[\mathrm{A}_{3}\right] /\left[\mathrm{A}_{1}\right]\right)^{\mathrm{x}}$ so $3 \times 10^{-4} / 1 \times 10^{-4}=\mathrm{k}(.3 / .1)^{\mathrm{x}}$ and $\mathrm{x}=1$. This is a 1 st order reaction in A .

Example 2:

- hold [A] in trial 1 and 2 constant, then rate $_{2} /$ rate $_{1}=\mathrm{k}\left(\left[\mathrm{B}_{2}\right] /\left[\mathrm{B}_{1}\right]\right)^{\mathrm{y}}$ so $54 \times 10^{-3} / 2 \times 10^{-3}=\mathrm{k}(.3 / .1)^{\mathrm{y}}$ and $\mathrm{y}=3$. This is a 3rd order reaction in B.
- now hold $[\mathrm{B}]$ in trial 1 and 3 constant, then rate $_{3} / \mathrm{rate}_{1}=\mathrm{k}\left(\left[\mathrm{A}_{3}\right] /\left[\mathrm{A}_{1}\right]\right)^{\mathrm{x}}$ so $4.5 \times 10^{-3} / 2 \times 10^{-3}=\mathrm{k}(.15 / .1)^{\mathrm{x}}$ and $\mathrm{x}=2$. This is a 2 nd order reaction in A.

Example 3:

- hold $[\mathrm{B}]$ in trial 1 and 2 constant, then
rate $_{2} /$ rate $_{1}=\mathrm{k}\left(\left[\mathrm{A}_{2}\right] /\left[\mathrm{A}_{1}\right]\right)^{\mathrm{x}}$ so $5 \times 10^{-5} / 5 \times 10^{-5}=\mathrm{k}(.1 / 1)^{\mathrm{x}}$ and $\mathrm{x}=0$. This is a 1st order reaction in A.
- It is not necessary to hold [A] constant because it is first order and the rate doesn't change with [A]. rate $_{3} / \operatorname{rate}_{1}=\mathrm{k}\left(\left[\mathrm{B}_{3}\right] /\left[\mathrm{B}_{1}\right]\right)^{y}$ so $2.5 \times 10^{-5} / 5 \times 10^{-5}=\mathrm{k}(.2 / .1)^{y}$ and $\mathrm{y}=-1$. This is a -1 order in reaction in B.

Do this yourself for each example above. The answers are in the rows at the bottom of the tables.
4. Determining order from integrated rate equation. The final method for determining orders is indirect and unlikely to be asked on a test, but it really shows whether you know your kinetics. Note that the integrated rate law solutions for zero, first and second order expressions are different functions but all can be written in the form of a straight line. This means that if I plot the concentration, [A], as a function of time for each expression below, the correct order should yield a straight line function. For thrills lets do it for the data in a first order reaction, but apply the functions for all three equations

$\mathrm{Z00K}$ concentration time data		2nd order	1st order	Zero order
time	$[\mathrm{C}]$	$1 /[\mathrm{C}]$	$\ln [\mathrm{C}]$	$[\mathrm{C}]$
0	$\boldsymbol{?}$			
1	.12	8.33	$\mathbf{- 2 . 1}$.12
2	.074	13.5	$\mathbf{- 2 . 6}$.074
3	.044	22.7	$\mathbf{- 3 . 1}$.044
4	.027	37.0	$\mathbf{- 3 . 6}$.027
5	.016	62.5	$\mathbf{- 4 . 1}$.016
6	.009	111	$\mathbf{- 4 . 6}$.009
8	.0036	277	$\mathbf{- 5 . 6}$.0036
10	.0013	769	$\mathbf{- 6 . 6}$.0013

Isn't this exciting, notice that the only one that is a straight line is first order, hence the reaction is first order in [C]. Yet another way to find the order of a reaction!!

