CH 302 Worksheet 10 Answer Key

- 1. NaH₂PO4 (conc. = $C_{NaH2PO4}$) is dissolved in water. Write the mass balance equation for this system. **Answer:** $C_{NaH2PO4} = [H_3PO_4] + [H_2PO_4^-] + [HPO_4^{-2}^-] + [PO_4^{-3}^-]$
- 2. Write the charge balance equation for the solution in question 1. Answer: $[H^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}]$
- 3. Write the charge balance equation for a solution containing all of the following ions: H^+ , OH^- , Na^+ , Ba^{2+} , PO_4^{3-} , Ag^{3+} , SO_4^{2-} , and $COOH^-$. **Answer:** $[H^+] + [Na^+] + 2[Ba^{2+}] + 3[Ag^{3+}] = [OH^-] + [COOH^-] + 2[SO_4^{2-}] + 3[PO_4^{3-}]$
- NaH₂PO₄, LiHCO₃, HCl, NaCl, and LiOH are all dissolved in water. How many equations are needed to completely describe this system?
 Answer: In solution, we have: H⁺, OH⁻, Na⁺, H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻, Li⁺, H₂CO₃, HCO₃⁻, CO₃²⁻, and Cl⁻. So we need 12 equations.
- 5. Write a charge balance equation for the system described in question 4. Answer: $[H^+] + [Na^+] + [Li^+] = [OH^-] [Cl^-] + [H_2PO_4^-] + 2[HPO_4^{2^-}] + 3[PO_4^{3^-}] + [HCO_3^-] + 2[CO_3^{2^-}]$
- 6. Write the mass balance equation for H_2CO_3 (conc. = C_{H2CO_3}) in water. Answer: $C_{H2CO_3} = [H_2CO_3] + [HCO_3^-] + [CO_3^{-2}^-]$
- 7. Find the pH of 10^{-8} M HCl like you would have for the last two quizzes. Then find it using the exact expression, $[H^+]^2 [H^+]C_{HCl} K_w = 0$. Compare the two answers. Answer: Like the last two quizzes:

 $[H^+] = C_a + 10^{-7} = 1.1 \text{ x } 10^{-7} \text{ pH} = 6.96$

Exactly:

Solving the quadratic equation yields: $[H^+] = 1.05 \times 10^{-7}$ pH = 6.98

The exact solution is a slightly lower pH because the extra H^+ from the HCl causes a shift in the water equilibrium to the left, resuling in a higher $[H^+]$.

8. Repeat the same thing as in question 7, this time for 10^{-2} M HCl. Answer: Same work, so I'll just give the answers:

```
Like the last two quizzes: pH = 2
Exactly: pH = 2
So the water equilibrium really doesn't matter in this case.
```

9. Assuming an appropriate C_{HCl} , derive the approximate equation for a strong acid, $[H^+] = C_a$, from the expression given in question 6.

Answer: Assuming C_a is large, and since HCl is strong, $[H^+]C_a >> K_w$. So we get:

$$[H^{+}]^{2} - [H^{+}]C_{a} - K_{w} \approx [H^{+}]^{2} - [H^{+}]C_{a} = 0$$

Divide by [H⁺] [H⁺] - C_a = 0 [H⁺] = C_a

10. In class, you were showen that the exact $[H^+]$ for a weak acid is given by

 $[H^{+}]^{3} + K_{a}[H^{+}]^{2} - (K_{w} + K_{a}C_{a})[H^{+}] - K_{a}K_{w} = 0$

Assuming appropriate values for K_a and C_a , derive the approximate equation for a weak acid, $[H^+] = (K_a C_a)^{1/2}$, from this expression.

Answer: K_w is small and we assume K_a is small "enough," so $K_aK_w \approx 0$.

$$\begin{split} [H^+]^3 + K_a[H^+]^2 - (K_w - K_aC_a)[H^+] &= 0\\ [H^+]^2 + K_a([H^+] - C_a) - K_w &= 0 \end{split}$$
Weak acids barely dissociate, so $[H^+] << C_a$. Furthermore, $[H^+]^2$ and $K_a[H^+]$ are both much larger than K_w . Thus, we get $[H^+]^2 - K_aC_a = 0$ $[H^+] &= (K_aC_a)^{1/2} \end{split}$

- 11. What is the pH of a 0.05 M H₂SO₄ solution if $K_{a2} = 1.1 \times 10^{-2}$? (In class, Dr. Laude did this using a RICE expression and ignored the water equilibrium. Feel free to use his same approach.) Answer: Setting up the first RICE expression, assuming complete dissociation of the storng acid, at equilibrium you have 0.05 M HSO₄⁻ and 0.05M H⁺. The second equilibrium produces the equation $x^2 + 0.061 \times 10^{-2}x - 5.5 \times 10^{-4} = 0$ which yields the root x = 0.007974 which is the amount of H⁺ produced in the second dissociation. When added to the 0.05 M H⁺ from the first dissociation, the total H⁺ = 0.0579 M or a pH of 1.2.
- 12. Rank the concentrations of ions and neutrals at equilibrium in the solution formed in problem 11. Use some common sense reasoning to explain your answer without doing any calculations.
 Answer: H₂O >> H⁺ >> HSO₄⁻ >> SO₄⁼ > OH⁻ > H₂SO₄
 H₂O is 55 M so it is largest. We assume H₂SO₄ dissociates completely and is 0 M so it is the smallest concentration. In the RICE expression H⁺ and HSO₄⁻ are produced equally in the first dissociation, but some of the HSO₄⁻ dissociates to form SO₄⁼ and H⁺ so the total H⁺ is slightly higher than the HSO₄⁻. The SO₄⁼ is the result of the second dissociation and so it is less than HSO₄⁻. The OH⁻ will be very small because the solution is strongly acidic.

For Questions 13-20, list the species present in solution and write the system of equations that can be used to solve for their concentrations at equilibrium <u>exactly</u>. You don't have to actually solve the system (but if you're an engineer, go for it).

13. HF (conc. = C_{HF}) in water

Answer: We have H^+ , OH^- , and F^- . So we need 3 equations.

 $K_{w} = [H^{+}][OH^{-}]$ $K_{a} = [H^{+}][F^{-}]/[HF]$ $[H^{+}] = [OH^{-}] + [F^{-}]$

14. HCl (conc. = C_{HCl}) in water Answer: We have H⁺, OH⁻, and Cl⁻. So we need 3 equations. $K_w = [H^+][OH^-]$ $[H^+] = [OH^-] + [CI^-]$ $C_{HCI} = [CI^-]$

15. HCl (conc. = C_{HCl}) and NH₄Cl (conc. = C_{NH4Cl}) in water **Answer:** We have H⁺, OH⁻, Cl⁻, NH₃, and NH₄⁺. So we need 4 equations. $K_w = [H^+][OH^-]$ $K_a = [H^+][NH_3]/[NH_4^+]$ $[H^+] + [NH_4^+] = [OH^-] + [Cl^-]$ $[Cl^-] = C_{HCl} + C_{NH4Cl}$ $C_{NH4Cl} = [NH_4^+] + [NH_3]$

16. $Ba(OH)_2$ (conc. = $C_{Ba(OH)2}$) in water

Answer: We have H⁺, OH⁻, and Ba²⁺. So we need 4 equations. $K_w = [H^+][OH^-]$ $[Ba^{2+}] = C_{Ba(OH)2}$

 $[H^{+}] + 2[Ba^{2+}] = [OH^{-}]$

17. HCOOH (conc. = C_{HCOOH}) in water

Answer: We have H⁺, OH⁻, and COOH⁻. So we need 3 equations.

 $K_w = [H^+][OH^-]$ $K_a = [H^+][COOH^-]/[HCOOH]$ $[H^+] = [OH^-] + [COOH^-]$

18. NaOH (conc. = C_{NaOH}) in water

Answer: We have H⁺, OH⁻, and Na⁺. So we need 3 equations.

 $K_w = [H^+][OH^-]$ $C_{NaOH} = [Na^+]$ $[H^+] + [Na^+] = [OH^-]$

19. NaOH (conc. = C_{NaOH}) added to a beaker containing Na⁺ ions at a concentration of C_{Na} **Answer:** We have H⁺, OH⁻, and Na⁺. So we need 3 equations.

$$\begin{split} K_{w} &= [H^{+}][OH^{-}] \\ C_{NaOH} &= [Na^{+}] \\ [H^{+}] + [Na^{+}] &= [OH^{-}] \end{split}$$