CH302 Worksheet 2—Colligative Properties

All of this is intended to be done without the aid of a calculator. All of the calculations are designed such that approximating should be straight-forward and produce a correct result.

- 1. Based on the physical constants involved, which colligative property has the greatest magnitude for a solution of a given concentration? Which can't be compared in this way? Why?
- 2. Which colligative properties have a linear concentration dependence? Write their equations.
- 3. Rank the following aqueous solutions in terms of increasing boiling point: 3 m sugar, 2 m NaCl, 0.5 m Mg(OH)₂, 5 m AlN, 1 m urea.
- 4. Assuming a cell wall can withstand an osmotic pressure of 1 atmosphere and the concentration of Na⁺ in a cell is 50 mM, approximate the [Na⁺] outside the cell that would cause lysis.
- 5. If you dissolved 28 grams of NaCl in 90 grams of pure H_20 hot enough to have a vapor pressure of 30 torr, what will the new vapor pressure be?
- 6. Assuming standard conditions and a $K_f = 0.2 \text{ K} \cdot \text{m}^{-1}$ and a $K_b = 0.5 \text{ K} \cdot \text{m}^{-1}$ for water, what would be the freezing point of a solution that boiled at 375.5 K? Express your answer in both K and °C.
- 7. Based on the question above and assuming 1 kg of water, how many moles of NaCl would be needed to produce this effect? What about sugar?
- 8. Based on you understanding of boiling point elevation, why **doesn't** salting water help food to cook faster?
- 9. Vapor pressure is often described as a "surface phenomenon." Define this term in your own words to the best of your ability.
- 10. Raoult's can be used to calculate the decrease in vapor pressure when a non-volatile substance (like salt) is dissolved in a volatile substance (like water). Explain this phenomenon.