Worksheet for Identifying Types of Acids and Bases.

The biggest impediment to solving acid/base calculations is knowing what those compounds are. For each of the compounds listed below, assign what type of acid or base it is and then assign a symbol that you would use in an acid or base calculation

Possible types of acid or base answers:
strong acid, weak acid, strong base, weak base, Lewis acid, neither, amphiprotic
Possible symbols: $\mathbf{H}^{+}, \mathbf{O H}^{-}, \mathbf{H A}, \mathbf{A}^{-}, \mathbf{B}, \mathbf{B H}^{+}$, none

Name or molecular formula	Type of acid or base	Symbol in calculations
hydrochloric acid	Strong acid	H^{+}
potassium malonate	Weak base	A^{-}
$\mathrm{NH}_{4} \mathrm{Cl}$	Weak acid	BH^{+}
$\mathrm{H}_{2} \mathrm{SO} 4$		
HCOOH		
tartaric acid		
hydrofluoric acid		
$\mathrm{Ba}(\mathrm{OH})_{2}$		
HNO_{2}		
hypochlorous acid		
ammonium nitrate		
NH_{3}		
lithium hydroxide		
FeCl_{3}		
potassium bisulfate		
Br_{2}		
phosphoric acid		
dimethylamine		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CCOOH}$		
$\mathrm{CH}_{3} \mathrm{COO}{ }^{-} \mathrm{Na}^{+}$		
$\mathrm{Al}(\mathrm{OH})_{3}$		
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$		
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$		
Sulfurous acid		
Hydronium ion		
$\mathrm{H}_{2} \mathrm{O}$		
NaHCO_{3}		
Sodium carbonate		
$\mathrm{H}_{2} \mathrm{CO}_{3}$		
$\mathrm{H}_{3} \mathrm{PO}_{4}$		
Hydroxide ion		
HClO_{3}		
Ammonium acetate		
Potassium chloride		
$\mathrm{H}_{3} \mathrm{O}^{+}$		
Hydroiodic acid		
Br^{-}		
$\mathrm{CH}_{3} \mathrm{COOH}$		
BH_{3}		

Answer key for worksheet

Name or molecular formula	Type of acid or base	Symbol in calculations
hydrochloric acid	Strong acid	H^{+}
potassium malonate	Weak base	A^{-}
$\mathrm{NH}_{4} \mathrm{Cl}$	Weak acid	BH^{+}
$\mathrm{H}_{2} \mathrm{SO} 4$	Strong acid	H^{+}
HCOOH	Weak acid	HA
tartaric acid	Weak acid	HA
hydrofluoric acid	Weak acid	HA
$\mathrm{Ba}(\mathrm{OH})_{2}$	Strong base	OH^{-}
HNO_{2}	Weak acid	HA
hypochlorous acid	Weak acid	HA
ammonium nitrate	Weak acid	BH^{+}
NH_{3}	Weak base	B
lithium hydroxide	Strong base	OH^{-}
FeCl_{3}	Weak acid	Lewis acid
potassium bisulfate	amphiprotic	HA ${ }^{-}$
Br_{2}	neutral	none
phosphoric acid	Weak acid	$\mathrm{H}_{3} \mathrm{~A}$
dimethylamine	Weak base	B
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CCOOH}$	Weak acid	HA
$\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$	Weak base	A^{-}
$\mathrm{Al}(\mathrm{OH})_{3}$	Weak base	OH^{-}
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	Weak base	B
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$	Weak acid	BH^{+}
Sulfurous acid	Weak acid	HA
Hydronium ion	Strong acid	H^{+}
$\mathrm{H}_{2} \mathrm{O}$	amphiprotic	H^{+}and OH^{-}
NaHCO_{3}	amphiprotic	HA^{-}
Sodium carbonate	Weak base	A^{-}
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Weak acid	HA
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Weak acid	HA
Hydroxide ion	Strong base	OH^{-}
HClO_{3}	Strong acid	H^{+}
Ammonium acetate	Weak acid and weak base	BH^{+}and A^{-}
Potassium chloride	Neutral	none
$\mathrm{H}_{3} \mathrm{O}^{+}$	Strong acid	H^{+}
Hydroiodic acid	Strong acid	H^{+}
Br^{-}	Neutral	none
$\mathrm{CH}_{3} \mathrm{COOH}$	Weak acid	HA
BH_{3}	Weak acid	Lewis acid

