CH302 Worksheet 8 -How to Systematically Work Harder and Harder Acid Base
Calculations Exactly the Same Way: Proof that the Seven Steps to Solving Acid Base Problems Work
1 Remove the spectator ions
2 Are there any strong acids or bases
3 Are there any weak acids or bases
4 Do I neutralize (are there both acids and bases and is at least on of them strong?)
5 Neutralize: convert everything to moles, write down neutralization reaction, perform limiting reagent calculation, convert back to molarity if necessary)
6 Select the appropriate acid base calculation and solve
7 Convert to appropriate final form ($\mathrm{pH}, \mathrm{pOH}, \mathrm{H}+, \mathrm{OH}-$) using $14=\mathrm{pH}+\mathrm{pOH}$ and $14=\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}$

Important: These calculations are based upon the following important assumptions:

- Strong acids and bases completely dissociate
- Weak acids and bases do not dissociate significantly (typically they will have K values $<10^{-3}$)
- The dissociation of water does not contribut4e significantly to pH (concentrations of dissolved solutions are large, $>10^{-4}$, and the K values are not near $\mathrm{K}_{\mathrm{w}},>10^{-11}$)

In a nutshell, all of these problems are worked at high concentrations for a single equilibrium. When we get to complex equilibria you will learn how to tackle problems for which the assumptions do not hold.

1. What is the pOH of a $0.1 \mathrm{M} \mathrm{HClO}_{4}$ solution?

What kind of acid base problem was this? Strong acid with a pOH of 13.
2. What is the pH of a 0.1 M RbOH solution?

What kind of acid base problem was this? Strong base with a pH of 13
3. What is the $\left[\mathrm{H}^{+}\right]$of a 0.1 M malonic acid with a K_{a} of 10^{-9} solution?

What kind of acid base problem was this? Weak acid with a pH of 5
4. What is the pH of a 0.1 M lithium malonate solution? (Need a K_{b} ? Look at the problem above.)

What kind of acid base problem was this? Weak base with a pH of 11
5. What is the $\left[\mathrm{OH}^{-}\right]$of a 0.01 M methylamine solution of $\mathrm{K}_{\mathrm{b}}=10^{-6}$?

What kind of acid base problem was this? Weak base with a $\left[\mathrm{OH}^{-}\right]$of $10^{-4} \mathrm{M}$
6. What is the pOH of a $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$ solution? (Need a K_{a} ? Look at the problem above.)

What kind of acid base problem was this? Weak acid with a pOH of 9
7. What is the pH when equal volume mixtures of $0.2 \mathrm{M} \mathrm{HClO}_{4}$ and $0.2 \mathrm{M} \mathrm{LiClO}_{4}$ are mixed?

What kind of acid base problem was this? Strong acid with a pH of 1
8. What is the pH when 100 ml of $0.1 \mathrm{M} \mathrm{HClO}_{4}$ and 50 ml of $0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ are mixed?

What kind of acid base problem was this? Neutral water solution with pH of 7 at room temperature
9. What is the pH when 1 liter of $0.1 \mathrm{M} \mathrm{HClO}_{4}$ and 1 liter of $0.5 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ are mixed? (this is the first problem to need a calculator)

What kind of acid base problem was this? Strong base with a pH of 13.65
10. What is the pOH when 100 ml of 0.1 M malonic acid and 100 ml of 0.1 M sodium malonate are mixed?

What kind of acid base problem was this? Buffer with a pOH of 5
10. What is the pH when 100 ml of 0.1 M methylamine and 100 ml of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$ are mixed?

What kind of acid base problem was this? Buffer with a pH of 8

The next four calculations represent the titration of a weak base with a strong acid. Note the pH gets smaller and smaller as more acid is added.
11. What is the pH when no HBr is added to 100 ml of 0.1 M sodium malonate?

What kind of acid base problem was this? Weak base with a pH of 11
12. What is the pH when 50 ml of 0.1 M HBr is added to 100 ml of 0.1 M sodium malonate?

What kind of acid base problem was this? Buffer with a pH of 9
13. What is the pH when 100 ml of 0.1 M HBr is added to 100 ml of 0.1 M sodium malonate?

What kind of acid base problem was this? It is a weak acids with pH of 5.15
14. What is the pH when 110 ml of 0.1 M HBr is added to 100 ml of 0.1 M sodium malonate?

What kind of acid base problem was this? Excess strong acid with pH of 2.3

The next four calculations represent the titration of a weak acid with a strong base Note the $\mathbf{p H}$ gets larger and larger as more base is added.
15. What is the pH when no LiOH is added to 200 ml of $0.05 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$?

What kind of acid base problem was this? Weak acid with pH of 4.65
16. What is the pH when 100 ml of 0.05 M LiOH is added to 200 ml of $0.05 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$?

What kind of acid base problem was this? Buffer with a pH of 8
17. What is the pH when 200 ml of 0.05 M LiOH is added to 200 ml of $0.05 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$?

What kind of acid base problem was this? Weak base with pH of 10.2
18. What is the pH when 250 ml of 0.05 M LiOH is added to 200 ml of $0.05 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$?

What kind of acid base problem was this? Excess strong base with pH of 11.7
19. What is the pH when 10 ml of $0.1 \mathrm{M} \mathrm{HClO}_{3}$ is added to 100 ml of 0.1 M methylamine and 100 ml of 0.1 M $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$?

What kind of acid base problem was this? Buffer with pH of 7.95 (note it is a little less than pH 8 because we added a little bit of strong acid to a $1: 1$ buffer with $\mathrm{pK}_{\mathrm{a}}=8$.
20. What is the pOH when 20 ml of 0.001 M KOH is added to 200 ml of 0.01 M malonic acid and 200 ml of 0.02 M sodium malonate are mixed?

What kind of acid base problem was this? Buffer with a pOH of 4.69

Super-duper do it in your head $\mathbf{p H}$ problem. What is the pH when 10 ml of $0.1 \mathrm{M} \mathrm{HClO}_{3}$ and 20 ml of 0.05 M $\mathrm{Ba}(\mathrm{OH})_{2}$ are added to 150 ml of 0.1 M methylamine and 75 ml of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$? Hint, put away your calculator and do it in your head.

What kind of acid base problem was this? This is a buffer with pH 8. Note that the strong acid and strong base are present in equal amounts and neutralize each other. Also note this is a 1:1 buffer with $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$.

