CH 302 Worksheet 9 Answer Key

For all of the problems on this worksheet, use the following K values:

$$
\begin{array}{llll}
H_{3} P O O_{4}: & p K_{a 1}=2 & p K_{a 2}=6 & p K_{a 3}=10 \\
H_{2} \mathrm{CO}_{3}: & p K_{a 1}=4 & p K_{a 2}=10 &
\end{array}
$$

1. You drop 0.1 mol of KOH into 1 L of water. What is the pH of solution?

Answer: $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(\mathrm{C}_{\mathrm{b}}\right)=1 \quad \mathrm{pH}=13$
2. You drop 0.1 mol of KOH into a 1 L solution of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}$. What is the pH of the solution?
Answer: Neutralize; you have $0.9 \mathrm{M} \mathrm{H}_{3} \mathrm{~A}$ and $1.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}^{-}$.

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a} 1}\left(\mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}\right)=10^{-2}(0.9 / 1.1)=8.18 \times 10^{-3}} \\
& \mathrm{pH}=2.09
\end{aligned}
$$

3. You drop 0.1 mol of NaOH into a 1 L solution of $0.5 \mathrm{M} \mathrm{RbHCO}_{3}$ and $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$. What is the pH of the solution?
Answer: Neutralize; you have $0.4 \mathrm{M} \mathrm{HA}^{-}$and $0.6 \mathrm{M} \mathrm{A}^{2-}$.

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a} 2}\left(\mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}\right)=10^{-10}(0.4 / 0.6)=6.67 \times 10^{-11}} \\
& \mathrm{pH}=10.18
\end{aligned}
$$

4. You drop 0.5 mol of NaOH into a 1 L solution of $0.5 \mathrm{M} \mathrm{RbHCO}_{3}$ and $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$. What is the pH of the solution?
Answer: Neutralize; you have $1.0 \mathrm{M} \mathrm{A}^{2-}$.

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\left(\mathrm{K}_{\mathrm{b} 1} \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}=\left[\left(\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}\right) \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}=\left(10^{-4} \times 1.0\right)^{1 / 2}=10^{-2}} \\
& \mathrm{pOH}=2 \quad \mathrm{pH}=12
\end{aligned}
$$

5. You drop 1.0 mol of NaOH into a 1 L solution of $0.5 \mathrm{M} \mathrm{RbHCO}_{3}$ and $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$. What is the pH of the solution?
Answer: Neutralize; you have $1.5 \mathrm{M} \mathrm{A}^{2-}$ and $0.5 \mathrm{M} \mathrm{OH}^{-}$.

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{C}_{\mathrm{b}}=0.5 \mathrm{M}
$$

$$
\mathrm{pOH}=0.3 \quad \mathrm{pH}=13.7
$$

For questions 6-13, $1.5 \mathrm{~L} 0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is titrated with 1 M NaOH . Give the $\mathbf{p H}$ for the given amount of NaOH solution added to the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution.
$\left.\begin{array}{ccl} & \mathbf{V}_{\mathbf{N a O H}} \mathbf{p H} & \\ \hline \text { 6. } & 0 \mathrm{~mL} & \begin{array}{l}{\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{\mathrm{a}}\right)^{1 / 2}=\left(10^{-2} \times 0.1\right)^{1 / 2}=10^{-1.5}} \\ \\ \end{array} \\ & & \mathbf{p H}=\mathbf{1 . 5}\end{array}\right]$
8. $\quad 150 \mathrm{~mL} \quad$ Neutralize: $0.15 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~A}^{-}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}\right)^{1 / 2}=\left(10^{-2} 10^{-6}\right)^{1 / 2}=10^{-4}} \\
& \mathbf{p H}=\mathbf{4 . 0}
\end{aligned}
$$

9. 250 mL Neutralize: $0.05 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~A}^{-}$and $0.10 \mathrm{~mol} \mathrm{HA}^{2-}$

$$
\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a} 2}\left(\mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}\right)=10^{-6}(0.05 / 0.10)=5 \times 10^{-7}
$$

$$
\mathrm{pH}=6.3
$$

10. $300 \mathrm{~mL} \quad$ Neutralize: $0.15 \mathrm{~mol} \mathrm{HA}^{2-}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}\right)^{1 / 2}=\left(10^{-6} 10^{-10}\right)^{1 / 2}=10^{-8}} \\
& \mathbf{p H}=\mathbf{8 . 0}
\end{aligned}
$$

11. 400 mL Neutralize: $0.05 \mathrm{~mol} \mathrm{HA}^{2-}$ and $0.10 \mathrm{~mol} \mathrm{~A}^{3-}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a} 3}\left(\mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}\right)=10^{-10}(0.05 / 0.10)=5 \times 10^{-11}} \\
& \mathbf{p H}=\mathbf{1 0 . 3}
\end{aligned}
$$

12. $450 \mathrm{~mL} \quad$ Neutralize: $0.15 \mathrm{~mol} \mathrm{~A}^{2-}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 3}=10^{-4} \\
& \mathrm{C}_{\mathrm{b}}=(0.15 \mathrm{~mol}) /(1.5 \mathrm{~L}+0.450 \mathrm{~L})=0.077 \mathrm{M} \\
& {\left[\mathrm{OH}^{-}\right]=\left(\mathrm{K}_{\mathrm{b} 1} \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}=2.8 \times 10^{-3}} \\
& \mathrm{pOH}=2.6 \quad \mathbf{p H}=\mathbf{1 1 . 4}
\end{aligned}
$$

13. $500 \mathrm{~mL} \quad$ Neutralize: $0.05 \mathrm{~mol} \mathrm{OH}^{-}$and $0.15 \mathrm{~mol} \mathrm{~A}^{2-}$
$\mathrm{C}_{\mathrm{b}}=(0.05 \mathrm{~mol}) /(1.5 \mathrm{~L}+0.5 \mathrm{~L})=0.025 \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(\mathrm{C}_{\mathrm{b}}\right)=1.6$
$\mathrm{pH}=12.4$
14. Sketch the titration curve for a triprotic acid such as $\mathrm{H}_{3} \mathrm{PO}_{4}$.
15. Place the numbers 6 through 13 on the curve indicating the area of the titration curve corresponding to the calculation.

The 11 questions below represent the important areas of a triprotic acid titration curve. For each mixture, explain where you are on the curve after neutralization, provide the equation you would use for the calculation, and estimate the correct pH for the given mixture. DON'T USE A CALCULATOR. To guide you, draw the equilibrium species essential to determining the pH in the beaker provided (AFTER NEUTRALIZATION.) Hints: Assume there are no K_{w} contribution in the calculations use these numbers a lot: Phosphoric acid values: $p K a_{1}=2 \quad p K a_{2}=6 \quad p K a_{3}=10$

16. $\mathbf{1 M ~ H C l}$ and $\mathbf{1} \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$

Where are you on a titration curve? Strong acid excess
Equation used to determine the $\mathrm{pH} . \mathrm{C}_{\mathrm{a}}$
Estimated pH. 0

17. $\mathbf{1} \mathrm{M} \mathrm{H}_{3} \mathrm{PO} 4$

Where are you on a titration curve? Beginning of weak acid titration
Equation used to determine the $\mathrm{pH} . \mathrm{H}^{+}=\left(\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{\mathrm{a}}\right)^{0.5}$
Estimated pH. 1 (this is a bad approximation because $\mathrm{K}_{\mathrm{a} 1}$ is so large)

18. $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO} 4$ and $1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$

Where are you on a titration curve? First buffer region where $\mathrm{pH}=\mathrm{pK}_{1}$
Equation used to determine the $\mathrm{pH} . \mathrm{H}^{+}=\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$
Estimated pH. 2

19. $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO} 4,1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and .002 M NaOH

Where are you on a titration curve? First buffer region
Equation used to determine the $\mathrm{pH} . \quad \mathrm{H}^{+}=\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$
Estimated pH. Slightly more basic than pH 2

20. $1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$

Where are you on a titration curve? First equivalence point
Equation used to determine the $\mathrm{pH} . \quad \mathrm{H}^{+}=\left(\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}\right)^{0.5}$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~A}^{-} \\
\mathrm{H}_{2} \mathrm{~A}^{-}
\end{gathered}
$$

Estimated pH. 4

22. $1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Li}_{2} \mathrm{HPO}_{4}$ and 0.002 HCl

Where are you on a titration curve? Second buffer region
Equation used to determine the $\mathrm{pH} . \mathrm{H}^{+}=\mathrm{K}_{\mathrm{a} 2} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$
Estimated pH. Slightly more acidic than pH 6

23. $1 \mathrm{M} \mathrm{Li}_{2} \mathrm{HPO}_{4}$

Where are you on a titration curve? Second equivalence point
Equation used to determine the $\mathrm{pH} . \quad \mathrm{H}^{+}=\left(\mathrm{K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}\right)^{0.5}$
Estimated pH. 8

24. $\mathbf{1} \mathrm{M} \mathrm{Li}_{2} \mathrm{HPO}_{4}$ and 1 M NaLiRbPO 4

Where are you on a titration curve? Third buffer region where $\mathrm{pH}=\mathrm{pK}_{3}$
Equation used to determine the $\mathrm{pH} . \mathrm{H}^{+}=\mathrm{K}_{\mathrm{a} 3} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$
Estimated pH. 10

25. $1 \mathrm{M} \mathrm{Li}_{2} \mathrm{HPO}_{4}$ and 1 M NaLiRbPO 4 and .002 M NaOH

Where are you on a titration curve? Third buffer region
Equation used to determine the $\mathrm{pH} . \mathrm{H}^{+}=\mathrm{K}_{\mathrm{a} 3} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$
Estimated pH. Slightly more basic than pH 10

26. $\mathbf{1 M ~ N a L i R b P O} 4$

Where are you on a titration curve? Third equivalence point, all weak base
Equation used to determine the $\mathrm{pH} . \quad \mathrm{OH}^{-}=\left(\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a3}} \mathrm{C}_{\mathrm{b}}\right)^{0.5}$
Estimated pH. 12

27. 1 M NaLiRbPO 4 and 1 M NaOH

Where are you on a titration curve? Excess strong base Equation used to determine the $\mathrm{pH} . \mathrm{C}_{\mathrm{b}}$

Estimated pH. 14

