CH 302 Worksheet 9 Answer Key

For all of the problems on this worksheet, use the following K values:

$$H_3PO_4$$
: $pK_{a1} = 2$ $pK_{a2} = 6$ $pK_{a3} = 10$ $PK_{a3} = 10$

- $p_{\mathbf{K}_{a1}} = 4$ $p_{\mathbf{K}_{a2}} = 10$
- 1. You drop 0.1 mol of KOH into 1 L of water. What is the pH of solution?

Answer:
$$pOH = -log[OH^-] = -log(C_b) = 1$$
 $pH = 13$

2. You drop 0.1 mol of KOH into a 1 L solution of 1 M H₃PO₄ and KH₂PO₄. What is the pH of the solution?

Answer: Neutralize; you have 0.9 M H₃A and 1.1 M H₂A⁻.
$$[H^+] = K_{a1}(C_a/C_b) = 10^{-2}(0.9/1.1) = 8.18 \times 10^{-3}$$
 pH = 2.09

3. You drop 0.1 mol of NaOH into a 1 L solution of 0.5 M RbHCO₃ and 0.5 M Na₂CO₃. What is the pH of the solution?

Answer: Neutralize; you have 0.4 M HA⁻ and 0.6 M A²⁻.
$$[H^+] = K_{a2}(C_a/C_b) = 10^{-10}(0.4/0.6) = 6.67 \times 10^{-11} \\ pH = 10.18$$

4. You drop 0.5 mol of NaOH into a 1 L solution of 0.5 M RbHCO₃ and 0.5 M Na₂CO₃. What is the pH of the solution?

Answer: Neutralize; you have 1.0 M A²⁻.
$$[OH^-] = (K_{b1}C_b)^{1/2} = [(K_w/K_{a2})C_b)^{1/2} = (10^{-4} \text{ x } 1.0)^{1/2} = 10^{-2}$$

$$pOH = 2 \qquad pH = 12$$

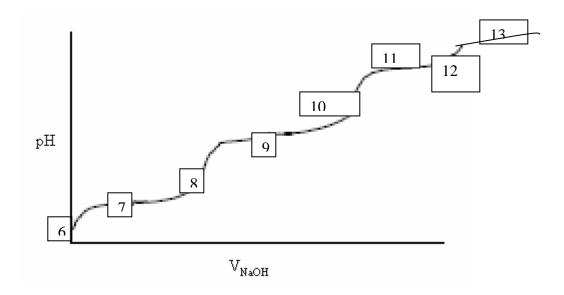
5. You drop 1.0 mol of NaOH into a 1 L solution of 0.5 M RbHCO₃ and 0.5 M Na₂CO₃. What is the pH of the solution?

Answer: Neutralize; you have 1.5 M
$$A^{2-}$$
 and 0.5 M OH^{-} . $[OH^{-}] = C_b = 0.5$ M $pOH = 0.3$ $pH = 13.7$

For questions 6-13, 1.5 L 0.1 M H_3PO_4 is titrated with 1 M NaOH. Give the pH for the given amount of NaOH solution added to the H_3PO_4 solution.

	$ m V_{NaOH}$ pH	
6.	0 mL	$[H^+] = (K_{a1}C_a)^{1/2} = (10^{-2}x0.1)^{1/2} = 10^{-1.5}$
		$\underline{\mathbf{pH}} = 1.5$
7.	50 mL	Neutralize: 0.1 mol H ₃ A and 0.05 mol H ₂ A ⁻ .
		[H+] = $K_{a1}(C_a/C_b) = 10^{-2}(0.1/0.05) = 2 \times 10^{-2}$
		$\mathbf{pH} = 1.7$
8.	150 mL	Neutralize: 0.15 mol H ₂ A ⁻
		$[H^{+}] = (K_{a1}K_{a2})^{1/2} = (10^{-2}10^{-6})^{1/2} = 10^{-4}$
9.	250 mL	pH = 4.0 Neutralize: 0.05 mol H_2A^- and 0.10 mol HA^{2-}
7.	230 IIIL	$[H^+] = K_{a2}(C_a/C_b) = 10^{-6}(0.05/0.10) = 5 \times 10^{-7}$
		$\mathbf{pH} = 6.3$

10. 300 mL Neutralize: 0.15 mol HA²⁻

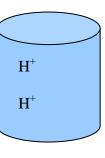

$$[H^+] = (K_{a2}K_{a3})^{1/2} = (10^{-6}10^{-10})^{1/2} = 10^{-8}$$

$$\mathbf{pH} = 8.0$$

11. 400 mL Neutralize: 0.05 mol HA²⁻ and 0.10 mol A³⁻ [H⁺] =
$$K_{a3}(C_a/C_b) = 10^{-10}(0.05/0.10) = 5 \times 10^{-11}$$
 pH = 10.3

13. So0 mL Neutralize:
$$0.05 \text{ mol OH}^-$$
 and 0.15 mol A^{2-} $C_b = (0.05 \text{ mol})/(1.5 \text{ L} + 0.5 \text{ L}) = 0.025 \text{ M}$ $pOH = -log[OH^-] = -log(C_b) = 1.6$ $pH = 12.4$

- 14. Sketch the titration curve for a triprotic acid such as H₃PO₄.
- **15.** Place the numbers 6 through 13 on the curve indicating the area of the titration curve corresponding to the calculation.

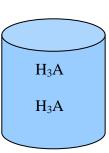

The 11 questions below represent the important areas of a triprotic acid titration curve. For each mixture, explain where you are on the curve after neutralization, provide the equation you would use for the calculation, and estimate the correct pH for the given mixture. DON'T USE A CALCULATOR. To guide you, draw the equilibrium species essential to determining the pH in the beaker provided (AFTER NEUTRALIZATION.) Hints: Assume there are no K_w contribution in the calculations use these numbers a lot: *Phosphoric acid values:* $pKa_1 = 2$ $pKa_2 = 6$ $pKa_3 = 10$

16. 1M HCl and 1 M H₃PO₄

Where are you on a titration curve? Strong acid excess

Equation used to determine the pH. C_a

Estimated pH. 0

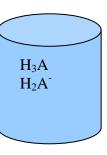


17. 1 M H₃PO4

Where are you on a titration curve? Beginning of weak acid titration

Equation used to determine the pH. $H^+ = (K_{al}C_a)^{0.5}$

Estimated pH. 1 (this is a bad approximation because K_{a1} is so large)

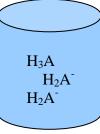


18. 1M H₃PO4 and 1 M NaH₂PO₄

Where are you on a titration curve? First buffer region where $pH = pK_1$

Equation used to determine the pH. $H^+ = K_{a1}C_a/C_b$

Estimated pH. 2



19. 1M H₃PO₄, 1 M NaH₂PO₄ and .002M NaOH

Where are you on a titration curve? First buffer region

Equation used to determine the pH. $H^+ = K_{a1}C_a/C_b$

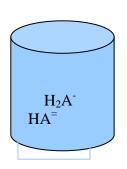
Estimated pH. Slightly more basic than pH 2

20. 1 M NaH₂PO₄

Where are you on a titration curve? First equivalence point

Equation used to determine the pH. $H^+ = (K_{a1}K_{a2})^{0.5}$

 $H_2A^ H_2A^-$

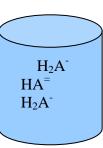

Estimated pH. 4

21. 1 M NaH₂PO₄ and 1M Li₂HPO₄

Where are you on a titration curve? Second buffer region where $pH = pK_2$

Equation used to determine the pH. $H^+ = K_{a2}C_a/C_b$

Estimated pH. 6

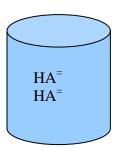


22. 1 M NaH₂PO₄, Li₂HPO₄ and 0.002 HCl

Where are you on a titration curve? Second buffer region

Equation used to determine the pH. $H^+ = K_{a2}C_a/C_b$

Estimated pH. Slightly more acidic than pH 6

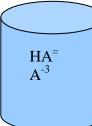


23. 1M Li₂HPO₄

Where are you on a titration curve? Second equivalence point

Equation used to determine the pH. $H^+ = (K_{a2}K_{a3})^{0.5}$

Estimated pH. 8

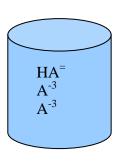


24. 1M Li₂HPO₄ and 1M NaLiRbPO₄

Where are you on a titration curve? Third buffer region where $pH = pK_3$

Equation used to determine the pH. $H^+ = K_{a3}C_a/C_b$

Estimated pH. 10

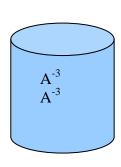


25. 1M Li₂HPO₄ and 1M NaLiRbPO₄ and .002M NaOH

Where are you on a titration curve? Third buffer region

Equation used to determine the pH. $H^+ = K_{a3}C_a/C_b$

Estimated pH. Slightly more basic than pH 10

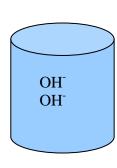


26. 1M NaLiRbPO₄

Where are you on a titration curve? Third equivalence point, all weak base

Equation used to determine the pH. $OH^- = (K_w/K_{a3}C_b)^{0.5}$

Estimated pH. 12



27. 1M NaLiRbPO₄ and 1M NaOH

Where are you on a titration curve? Excess strong base

Equation used to determine the pH. C_b

Estimated pH. 14

